Quantifier (logic) in the context of "Intensional logic"

Play Trivia Questions online!

or

Skip to study material about Quantifier (logic) in the context of "Intensional logic"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Quantifier (logic) in the context of Existential quantifier

In predicate logic, an existential quantification is a type of quantifier which asserts the existence of an object with a given property. It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("x" or "∃(x)" or "(∃x)"), read as "there exists", "there is at least one", or "for some". Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.

Quantification in general is covered in the article on quantification (logic). The existential quantifier is encoded as U+2203 THERE EXISTS in Unicode, and as \exists in LaTeX and related formula editors.

↑ Return to Menu

Quantifier (logic) in the context of Charles Sanders Peirce

Charles Sanders Peirce (/pɜːrs/ PURSS; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss, Peirce was "the most original and versatile of America's philosophers and America's greatest logician". Bertrand Russell wrote "he was one of the most original minds of the later nineteenth century and certainly the greatest American thinker ever".

Educated as a chemist and employed as a scientist for thirty years, Peirce meanwhile made major contributions to logic, such as theories of relations and quantification. C. I. Lewis wrote, "The contributions of C. S. Peirce to symbolic logic are more numerous and varied than those of any other writer—at least in the nineteenth century." For Peirce, logic also encompassed much of what is now called epistemology and the philosophy of science. He saw logic as the formal branch of semiotics or study of signs, of which he is a founder, which foreshadowed the debate among logical positivists and proponents of philosophy of language that dominated 20th-century Western philosophy. Peirce's study of signs also included a tripartite theory of predication.

↑ Return to Menu

Quantifier (logic) in the context of Formal semantics (natural language)

Formal semantics is the scientific study of linguistic meaning through formal tools from logic and mathematics. It is an interdisciplinary field, sometimes regarded as a subfield of both linguistics and philosophy of language. Formal semanticists rely on diverse methods to analyze natural language. Many examine the meaning of a sentence by studying the circumstances in which it would be true. They describe these circumstances using abstract mathematical models to represent entities and their features. The principle of compositionality helps them link the meaning of expressions to abstract objects in these models. This principle asserts that the meaning of a compound expression is determined by the meanings of its parts.

Propositional and predicate logic are formal systems used to analyze the semantic structure of sentences. They introduce concepts like singular terms, predicates, quantifiers, and logical connectives to represent the logical form of natural language expressions. Type theory is another approach utilized to describe sentences as nested functions with precisely defined input and output types. Various theoretical frameworks build on these systems. Possible world semantics and situation semantics evaluate truth across different hypothetical scenarios. Dynamic semantics analyzes the meaning of a sentence as the information contribution it makes.

↑ Return to Menu

Quantifier (logic) in the context of Propositional calculus

Propositional logic is a branch of logic. It is also called statement logic, sentential calculus, propositional calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called first-order propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.

↑ Return to Menu

Quantifier (logic) in the context of Logical constant

In logic, a logical constant or constant symbol of a language is a symbol that has the same semantic value under every interpretation of . Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic.

One of the fundamental questions in the philosophy of logic is "What is a logical constant?"; that is, what special feature of certain constants makes them logical in nature?

↑ Return to Menu

Quantifier (logic) in the context of Von Neumann–Bernays–Gödel set theory

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

A key theorem of NBG is the class existence theorem, which states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula. This class is built by mirroring the step-by-step construction of the formula with classes. Since all set-theoretic formulas are constructed from two kinds of atomic formulas (membership and equality) and finitely many logical symbols, only finitely many axioms are needed to build the classes satisfying them. This is why NBG is finitely axiomatizable. Classes are also used for other constructions, for handling the set-theoretic paradoxes, and for stating the axiom of global choice, which is stronger than ZFC's axiom of choice.

↑ Return to Menu

Quantifier (logic) in the context of Non-logical symbol

In mathematical logic, especially model theory, non-logical symbols are elements of a formal language whose interpretation may change depending on the model. In first-order logic, these usually consist of constant symbols, function symbols, and predicates. This is in contrast to logical constants which are required to have the same interpretation under every model, such as logical connectives and quantifiers.

A non-logical symbol only has meaning or semantic content when one is assigned to it by means of an interpretation. Consequently, a sentence containing a non-logical symbol lacks meaning except under an interpretation, so a sentence is said to be true or false under an interpretation. These concepts are defined and discussed in the article on first-order logic, and in particular the section on syntax.

↑ Return to Menu