Predicate (mathematical logic) in the context of "Formal semantics (natural language)"

Play Trivia Questions online!

or

Skip to study material about Predicate (mathematical logic) in the context of "Formal semantics (natural language)"

Ad spacer

⭐ Core Definition: Predicate (mathematical logic)

In logic, a predicate is a non-logical symbol that represents a property or a relation, though, formally, does not need to represent anything at all. For instance, in the first-order formula , the symbol is a predicate that applies to the individual constant which evaluates to either true or false. Similarly, in the formula , the symbol is a predicate that applies to the individual constants and . Predicates are considered a primitive notion of first-order, and higher-order logic and are therefore not defined in terms of other more basic concepts.

The term derives from the grammatical term "predicate", meaning a word or phrase that represents a property or relation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Predicate (mathematical logic) in the context of Formal semantics (natural language)

Formal semantics is the scientific study of linguistic meaning through formal tools from logic and mathematics. It is an interdisciplinary field, sometimes regarded as a subfield of both linguistics and philosophy of language. Formal semanticists rely on diverse methods to analyze natural language. Many examine the meaning of a sentence by studying the circumstances in which it would be true. They describe these circumstances using abstract mathematical models to represent entities and their features. The principle of compositionality helps them link the meaning of expressions to abstract objects in these models. This principle asserts that the meaning of a compound expression is determined by the meanings of its parts.

Propositional and predicate logic are formal systems used to analyze the semantic structure of sentences. They introduce concepts like singular terms, predicates, quantifiers, and logical connectives to represent the logical form of natural language expressions. Type theory is another approach utilized to describe sentences as nested functions with precisely defined input and output types. Various theoretical frameworks build on these systems. Possible world semantics and situation semantics evaluate truth across different hypothetical scenarios. Dynamic semantics analyzes the meaning of a sentence as the information contribution it makes.

↓ Explore More Topics
In this Dossier

Predicate (mathematical logic) in the context of Paradox

A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites".

In logic, many paradoxes exist that are invalid arguments, yet are nevertheless valuable in promoting critical thinking, while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox, which questions whether a "list of all lists that do not contain themselves" would include itself and showed that attempts to found set theory on the identification of sets with properties or predicates were flawed. Others, such as Curry's paradox, cannot be easily resolved by making foundational changes in a logical system.

↑ Return to Menu

Predicate (mathematical logic) in the context of Predicate logic

First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a type of formal system used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all x, if x is a human, then x is mortal", where "for all x" is a quantifier, x is a variable, and "... is a human" and "... is mortal" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, first-order logic is an extension of propositional logic.

A theory about a topic, such as set theory, a theory for groups, or a formal theory of arithmetic, is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of axioms believed to hold about them. "Theory" is sometimes understood in a more formal sense as just a set of sentences in first-order logic.

↑ Return to Menu

Predicate (mathematical logic) in the context of Extension (predicate logic)

The extension of a predicate – a truth-valued function – is the set of tuples of values that, used as arguments, satisfy the predicate. Such a set of tuples is a relation.

↑ Return to Menu

Predicate (mathematical logic) in the context of Universal quantification

In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("x", "∀(x)", or sometimes by "(x)" alone). Universal quantification is distinct from existential quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain.

↑ Return to Menu