Proton pump in the context of "Protein structure"

Play Trivia Questions online!

or

Skip to study material about Proton pump in the context of "Protein structure"

Ad spacer

⭐ Core Definition: Proton pump

A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction:

Mechanisms are based on energy-induced conformational changes of the protein structure, or on the Q cycle.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Proton pump in the context of Photosynthesis

Photosynthesis (/ˌftəˈsɪnθəsɪs/ FOH-tə-SINTH-ə-sis) is a system of biological processes by which photopigment-bearing autotrophic organisms, such as most plants, algae and cyanobacteria, convert light energy — typically from sunlight — into the chemical energy necessary to fuel their metabolism. The term photosynthesis usually refers to oxygenic photosynthesis, a process that releases oxygen as a byproduct of water splitting. Photosynthetic organisms store the converted chemical energy within the bonds of intracellular organic compounds (complex compounds containing carbon), typically carbohydrates like sugars (mainly glucose, fructose and sucrose), starches, phytoglycogen and cellulose. When needing to use this stored energy, an organism's cells then metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

Some organisms also perform anoxygenic photosynthesis, which does not produce oxygen. Some bacteria (e.g. purple bacteria) uses bacteriochlorophyll to split hydrogen sulfide as a reductant instead of water, releasing sulfur instead of oxygen, which was a dominant form of photosynthesis in the euxinic Canfield oceans during the Boring Billion. Archaea such as Halobacterium also perform a type of non-carbon-fixing anoxygenic photosynthesis, where the simpler photopigment retinal and its microbial rhodopsin derivatives are used to absorb green light and produce a proton (hydron) gradient across the cell membrane, and the subsequent ion movement powers transmembrane proton pumps to directly synthesize adenosine triphosphate (ATP), the "energy currency" of cells. Such archaeal photosynthesis might have been the earliest form of photosynthesis that evolved on Earth, as far back as the Paleoarchean, preceding that of cyanobacteria (see Purple Earth hypothesis).

↑ Return to Menu

Proton pump in the context of Boring Billion

The Boring Billion, otherwise known as the Mid Proterozoic and Earth's Middle Ages, is an informal geological time period between 1.8 and 0.8 billion years ago (Ga) during the middle Proterozoic eon spanning from the Statherian to the Tonian periods, characterized by more or less tectonic stability, climatic stasis and slow biological evolution. Although it is bordered by two different oxygenation events (the Great Oxygenation Event and Neoproterozoic Oxygenation Event) and two global glacial events (the Huronian and Cryogenian glaciations), the Boring Billion period itself actually had very low oxygen levels and no geological evidence of glaciations.

The oceans during the Boring Billion may have been oxygen-poor, nutrient-poor and sulfidic (euxinia), populated by mainly anoxygenic purple bacteria, a type of bacteriochlorophyll-based photosynthetic bacteria which uses hydrogen sulfide (H2S) for carbon fixation instead of water and produces sulfur as a byproduct instead of oxygen. This is known as a Canfield ocean, and such composition may have caused the oceans to be colored black-and-milky-turquoise instead of blue or green as later. (By contrast, during the much earlier Purple Earth phase during the Archean, photosynthesis was performed mostly by archaeal colonies using retinal-based proton pumps that absorb green light, and the oceans would be magenta-purple.)

↑ Return to Menu

Proton pump in the context of Halobacterium

Halobacterium (common abbreviation Hbt.), from Ancient Greek ἅλς (háls), meaning "salt", and "bacterium", is a genus in the family Halobacteriaceae.

The genus Halobacterium ("salt" or "ocean bacterium") consists of several species of Archaea with an aerobic metabolism which requires an environment with a high concentration of salt; many of their proteins will not function in low-salt environments. They grow on amino acids in their aerobic conditions. Their cell walls are also quite different from those of bacteria, as ordinary lipoprotein membranes fail in high salt concentrations. In shape, they may be either rods or cocci, and in color, either red or purple. They reproduce via binary fission (constriction), and are motile. Halobacterium grows best in a 42 °C environment. The genome of an unspecified Halobacterium species, sequenced by Shiladitya DasSarma, comprises 2,571,010 bp (base pairs) of DNA compiled into three circular strands: one large chromosome with 2,014,239 bp, and two smaller ones with 191,346 and 365,425 bp. This species, called Halobacterium sp. NRC-1, has been extensively used for postgenomic analysis. Halobacterium species can be found in the Great Salt Lake, the Dead Sea, Lake Magadi, and any other waters with high salt concentration. Purple Halobacterium species owe their color to bacteriorhodopsin, a light-sensitive membrane protein which acts as a proton pump, providing chemical energy with the proton gradient for the cell using light energy. The resulting proton gradient across the cell membrane is used to drive ATP synthase to generate adenosine triphosphate (ATP). Bacteriorhodopsin is very similar to rhodopsin, light-sensitive receptor proteins found in the retina of most animals.

↑ Return to Menu

Proton pump in the context of Microbial rhodopsin

Microbial rhodopsins, also known as bacterial rhodopsins, are retinal-binding proteins that provide light-dependent ion transport and sensory functions in halophilic and other bacteria. They are integral membrane proteins with seven transmembrane helices, the last of which contains the attachment point (a conserved lysine) for retinal. Most microbial rhodopsins pump inwards, however "mirror rhodopsins" which function outwards have been discovered.

This protein family includes light-driven proton pumps, ion pumps and ion channels, as well as light sensors. For example, the proteins from halobacteria include bacteriorhodopsin and archaerhodopsin, which are light-driven proton pumps; halorhodopsin, a light-driven chloride pump; and sensory rhodopsin, which mediates both photoattractant (in the red) and photophobic (in the ultra-violet) responses. Proteins from other bacteria include proteorhodopsin.

↑ Return to Menu

Proton pump in the context of Phototroph

Phototrophs (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light' and τροφή (trophḗ) 'nourishment') are organisms that carry out photon capture to acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs photosynthesize: they anabolically convert carbon dioxide into biomolecules to be utilized structurally (e.g. cellulose and membrane lipids), functionally (e.g. vitamins, nucleotides, and amino acids), or as a source for later catabolic processes (e.g. starches, sugars and fats). All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient, which is utilized by ATP synthase to provide adenosine triphosphate (ATP) for the cell. Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds (e.g., Na
2
S
2
O
3
, as in some purple sulfur bacteria, or H
2
S
, as in some green sulfur bacteria) they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.

↑ Return to Menu

Proton pump in the context of Bacteriorhodopsin

Bacteriorhodopsin (Bop) is a protein used by Archaea, most notably by Haloarchaea, a class of the Euryarchaeota. It acts as a proton pump; that is, it captures light energy and uses it to move protons across the membrane out of the cell. The resulting proton gradient is subsequently converted into chemical energy.

↑ Return to Menu