Cell walls in the context of "Halobacterium"

Play Trivia Questions online!

or

Skip to study material about Cell walls in the context of "Halobacterium"

Ad spacer

⭐ Core Definition: Cell walls

A cell wall is a structural layer that surrounds some cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, and functions as a selective barrier. Another vital role of the cell wall is to help the cell withstand osmotic pressure and mechanical stress. Cell walls are found in most prokaryotes, with the exception of mollicute bacteria. Among the eukaryotes, cells walls are prevalent in fungi, algae and plants but absent from animals and many other taxa.

The composition of cell walls varies across taxonomic groups, species, cell type, and the cell cycle. In land plants, the primary cell wall comprises polysaccharides like cellulose, hemicelluloses, and pectin. Often, other polymers such as lignin, suberin or cutin are anchored to or embedded in plant cell walls. Algae exhibit cell walls composed of glycoproteins and polysaccharides, such as carrageenan and agar, distinct from those in land plants. Bacterial cell walls contain peptidoglycan, while archaeal cell walls vary in composition, potentially consisting of glycoprotein S-layers, pseudopeptidoglycan, or polysaccharides. Fungi possess cell walls constructed from the polymer chitin, specifically N-acetylglucosamine. Diatoms have a unique cell wall composed of biogenic silica.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Cell walls in the context of Halobacterium

Halobacterium (common abbreviation Hbt.), from Ancient Greek ἅλς (háls), meaning "salt", and "bacterium", is a genus in the family Halobacteriaceae.

The genus Halobacterium ("salt" or "ocean bacterium") consists of several species of Archaea with an aerobic metabolism which requires an environment with a high concentration of salt; many of their proteins will not function in low-salt environments. They grow on amino acids in their aerobic conditions. Their cell walls are also quite different from those of bacteria, as ordinary lipoprotein membranes fail in high salt concentrations. In shape, they may be either rods or cocci, and in color, either red or purple. They reproduce via binary fission (constriction), and are motile. Halobacterium grows best in a 42 °C environment. The genome of an unspecified Halobacterium species, sequenced by Shiladitya DasSarma, comprises 2,571,010 bp (base pairs) of DNA compiled into three circular strands: one large chromosome with 2,014,239 bp, and two smaller ones with 191,346 and 365,425 bp. This species, called Halobacterium sp. NRC-1, has been extensively used for postgenomic analysis. Halobacterium species can be found in the Great Salt Lake, the Dead Sea, Lake Magadi, and any other waters with high salt concentration. Purple Halobacterium species owe their color to bacteriorhodopsin, a light-sensitive membrane protein which acts as a proton pump, providing chemical energy with the proton gradient for the cell using light energy. The resulting proton gradient across the cell membrane is used to drive ATP synthase to generate adenosine triphosphate (ATP). Bacteriorhodopsin is very similar to rhodopsin, light-sensitive receptor proteins found in the retina of most animals.

↓ Explore More Topics
In this Dossier

Cell walls in the context of Tracheids

A tracheid is a long and tapered lignified cell in the xylem of vascular plants. It is a type of conductive cell called a tracheary element. Angiosperms also use another type of conductive cell, called vessel elements, to transport water through the xylem. The main functions of tracheid cells are to transport water and inorganic salts, and to provide structural support for trees. There are often pits on the cell walls of tracheids, which allows for water flow between cells. Tracheids are dead at functional maturity and do not have a protoplast. The wood (softwood) of gymnosperms such as pines and other conifers is mainly composed of tracheids. Tracheids are also the main conductive cells in the primary xylem of ferns.

The tracheid was first named by the German botanist Carl Gustav Sanio in 1863, from the German Tracheide.

↑ Return to Menu

Cell walls in the context of Arabinoxylan

Arabinoxylan is a form of the hemicellulose xylan found in both the primary and secondary cell walls of plants which in addition to xylose contains substantial amounts of another pentose sugar, arabinose. The term arabinoxylan usually refers to feruloyl-arabinoxylan from grasses and other commelinids containing moieties of the phenolic ferulic acid that can undergo oxidative coupling (in the same way as lignin units) forming crosslinks between arabinoxylan chains and with lignin. Whilst arabinose has been found linked to xylan in non-commelinid plants, ferulic acid has not been reported on these and unlike feruloyl-arabinoxylan these arabinoxylans are not monophyletic. The remainder of this article refers to feruloyl-arabinoxylan from cell walls of grasses and other commelinid species.

↑ Return to Menu

Cell walls in the context of Phytolith

Phytoliths (from Greek, "plant stone") are rigid, microscopic mineral deposits found in some plant tissues, often persisting after the decay of the plant. Although some use "phytolith" to refer to all mineral secretions by plants, it more commonly refers to siliceous plant remains. Phytoliths come in varying shapes and sizes. The plants which exhibit them take up dissolved silica from the groundwater, whereupon it is deposited within different intracellular and extracellular structures of the plant.

The silica is absorbed in the form of monosilicic acid (Si(OH)4), and is carried by the plant's vascular system to the cell walls, cell lumen, and intercellular spaces. Depending on the plant taxa and soil condition, absorbed silica can range from 0.1% to 10% of the plant's total dry weight. When deposited, the silica replicates the structure of the cells, providing structural support to the plant. Phytoliths strengthen the plant against abiotic stressors such as salt runoff, metal toxicity, and extreme temperatures. Phytoliths can also protect the plant against biotic threats such as insects and fungal diseases.

↑ Return to Menu