Proportionality (mathematics) in the context of Circular function


Proportionality (mathematics) in the context of Circular function

Proportionality (mathematics) Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Proportionality (mathematics) in the context of "Circular function"


⭐ Core Definition: Proportionality (mathematics)

In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio. The ratio is called coefficient of proportionality (or proportionality constant) and its reciprocal is known as constant of normalization (or normalizing constant). Two sequences are inversely proportional if corresponding elements have a constant product.

Two functions and are proportional if their ratio is a constant function.

↓ Menu
HINT:

In this Dossier

Proportionality (mathematics) in the context of Pythagoras

Pythagoras of Samos (Ancient Greek: Πυθαγόρας; c. 570 – c. 495 BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of Plato, Aristotle, and, through them, Western philosophy. Modern scholars disagree regarding Pythagoras's education and influences, but most agree that he travelled to Croton in southern Italy around 530 BC, where he founded a school in which initiates were allegedly sworn to secrecy and lived a communal, ascetic lifestyle.

In antiquity, Pythagoras was credited with mathematical and scientific discoveries, such as the Pythagorean theorem, Pythagorean tuning, the five regular solids, the theory of proportions, the sphericity of the Earth, the identity of the morning and evening stars as the planet Venus, and the division of the globe into five climatic zones. He was reputedly the first man to call himself a philosopher ("lover of wisdom"). Historians debate whether Pythagoras made these discoveries and pronouncements, as some of the accomplishments credited to him likely originated earlier or were made by his colleagues or successors, such as Hippasus and Philolaus.

View the full Wikipedia page for Pythagoras
↑ Return to Menu

Proportionality (mathematics) in the context of Cartogram

A cartogram (also called a value-area map or an anamorphic map, the latter common among German speakers) is a thematic map of a set of features (countries, provinces, etc.), in which their geographic size is altered to be directly proportional to a selected variable, such as travel time, population, or gross national income. Geographic space itself is thus warped, sometimes extremely, in order to visualize the distribution of the variable. It is one of the most abstract types of map; in fact, some forms may more properly be called diagrams. They are primarily used to display emphasis and for analysis as nomographs.

Cartograms leverage the fact that size is the most intuitive visual variable for representing a total amount. In this, it is a strategy that is similar to proportional symbol maps, which scale point features, and many flow maps, which scale the weight of linear features. However, these two techniques only scale the map symbol, not space itself; a map that stretches the length of linear features is considered a linear cartogram (although additional flow map techniques may be added). Once constructed, cartograms are often used as a base for other thematic mapping techniques to visualize additional variables, such as choropleth mapping.

View the full Wikipedia page for Cartogram
↑ Return to Menu

Proportionality (mathematics) in the context of Newton's law of universal gravitation

Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers of mass. Separated objects attract and are attracted as if all their mass were concentrated at their centers. The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.

This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica (Latin for 'Mathematical Principles of Natural Philosophy' (the Principia)), first published on 5 July 1687.

View the full Wikipedia page for Newton's law of universal gravitation
↑ Return to Menu

Proportionality (mathematics) in the context of Sector (instrument)

The sector, also known as a sector rule, proportional compass, or military compass, is a major calculating instrument that was in use from the end of the sixteenth century until the nineteenth century. It is an instrument consisting of two rulers of equal length joined by a hinge. A number of scales are inscribed upon the instrument which facilitate various mathematical calculations. It is used for solving problems in proportion, multiplication and division, geometry, and trigonometry, and for computing various mathematical functions, such as square roots and cube roots. Its several scales permitted easy and direct solutions of problems in gunnery, surveying and navigation. The sector derives its name from the fourth proposition of the sixth book of Euclid, where it is demonstrated that similar triangles have their like sides proportional. Some sectors also incorporated a quadrant, and sometimes a clamp at the end of one leg which allowed the device to be used as a gunner's quadrant.

View the full Wikipedia page for Sector (instrument)
↑ Return to Menu

Proportionality (mathematics) in the context of Inverse-square law

In physical science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity (being nothing more than the value of the physical quantity) is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understood as geometric dilution corresponding to point-source radiation into three-dimensional space.

Radar energy expands during both the signal transmission and the reflected return, so the inverse square for both paths means that the radar will receive energy according to the inverse fourth power of the range.

View the full Wikipedia page for Inverse-square law
↑ Return to Menu

Proportionality (mathematics) in the context of Exponential growth

Exponential growth occurs when a quantity grows as an exponential function of time. The quantity grows at a rate directly proportional to its present size. For example, when it is 3 times as big as it is now, it will be growing 3 times as fast as it is now.

In more technical language, its instantaneous rate of change (that is, the derivative) of a quantity with respect to an independent variable is proportional to the quantity itself. Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.

View the full Wikipedia page for Exponential growth
↑ Return to Menu

Proportionality (mathematics) in the context of Trigonometric functions

In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and are widely used for studying periodic phenomena through Fourier analysis.

The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent functions. Their reciprocals are respectively the cosecant, the secant, and the cotangent functions, which are less used. Each of these six trigonometric functions has a corresponding inverse function and has an analog among the hyperbolic functions.

View the full Wikipedia page for Trigonometric functions
↑ Return to Menu

Proportionality (mathematics) in the context of Exchange value

In political economy and especially Marxian economics, exchange value (German: Tauschwert) refers to one of the four major attributes of a commodity, i.e., an item or service produced for, and sold on the market, the other three attributes being use value, economic value, and price. Thus, a commodity has the following:

These four concepts have a very long history in human thought, from Aristotle to David Ricardo, and became more clearly distinguished as the development of commercial trade progressed but have largely disappeared as four distinct concepts in modern economics.

View the full Wikipedia page for Exchange value
↑ Return to Menu

Proportionality (mathematics) in the context of Nonlinear system

In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function which is not a polynomial of degree one.In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in them. Systems can be defined as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it.

View the full Wikipedia page for Nonlinear system
↑ Return to Menu

Proportionality (mathematics) in the context of Parity progression ratios

A parity progression ratios (PPR) is a measure commonly used in demography to study fertility. The PPR is simply the proportion of women with a certain number of children who go on to have another child. Calculating the PPR, also known as , can be achieved by using the following formula:

View the full Wikipedia page for Parity progression ratios
↑ Return to Menu

Proportionality (mathematics) in the context of Spring mass system

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:where k is a positive constant.

The harmonic oscillator model is important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits.

View the full Wikipedia page for Spring mass system
↑ Return to Menu

Proportionality (mathematics) in the context of Pie chart

A pie chart (or a circle chart) is a circular statistical graphic which is divided into slices to illustrate numerical proportion. In a pie chart, the arc length of each slice (and consequently its central angle and area) is proportional to the quantity it represents. While it is named for its resemblance to a pie which has been sliced, there are variations on the way it can be presented. The earliest known pie chart is generally credited to William Playfair's Statistical Breviary of 1801.

Pie charts are very widely used in the business world and the mass media. However, they have been criticized, and many experts recommend avoiding them, as research has shown it is more difficult to make simple comparisons such as the size of different sections of a given pie chart, or to compare data across different pie charts. Some research has shown pie charts perform well for comparing complex combinations of sections (e.g., "A + B vs. C + D"). Commonly recommended alternatives to pie charts in most cases include bar charts, box plots, and dot plots.

View the full Wikipedia page for Pie chart
↑ Return to Menu

Proportionality (mathematics) in the context of Weber–Fechner law

The Weber–Fechner laws are two related scientific laws in the field of psychophysics, known as Weber's law and Fechner's law. Both relate to human perception, more specifically the relation between the actual change in a physical stimulus and the perceived change. This includes stimuli to all senses: vision, hearing, taste, touch, and smell.

Ernst Heinrich Weber states that "the minimum increase of stimulus which will produce a perceptible increase of sensation is proportional to the pre-existent stimulus," while Gustav Fechner's law is an inference from Weber's law (with additional assumptions) which states that the intensity of our sensation increases as the logarithm of an increase in energy rather than as rapidly as the increase.

View the full Wikipedia page for Weber–Fechner law
↑ Return to Menu

Proportionality (mathematics) in the context of Stefan–Boltzmann law

The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

For an ideal absorber/emitter or black body, the Stefan–Boltzmann law states that the total energy radiated per unit surface area per unit time (also known as the radiant exitance) is directly proportional to the fourth power of the black body's temperature, T:

View the full Wikipedia page for Stefan–Boltzmann law
↑ Return to Menu

Proportionality (mathematics) in the context of Decay constant

A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ (lambda) is a positive rate called the exponential decay constant, disintegration constant, rate constant, or transformation constant:

The solution to this equation (see derivation below) is:

View the full Wikipedia page for Decay constant
↑ Return to Menu