Central angle in the context of "Pie chart"

Play Trivia Questions online!

or

Skip to study material about Central angle in the context of "Pie chart"

Ad spacer

⭐ Core Definition: Central angle

A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). The central angle is also known as the arc's angular distance. The arc length spanned by a central angle on a sphere is called spherical distance.

The size of a central angle Θ is 0° < Θ < 360° or 0 < Θ < 2π (radians). When defining or drawing a central angle, in addition to specifying the points A and B, one must specify whether the angle being defined is the convex angle (<180°) or the reflex angle (>180°). Equivalently, one must specify whether the movement from point A to point B is clockwise or counterclockwise.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Central angle in the context of Pie chart

A pie chart (or a circle chart) is a circular statistical graphic which is divided into slices to illustrate numerical proportion. In a pie chart, the arc length of each slice (and consequently its central angle and area) is proportional to the quantity it represents. While it is named for its resemblance to a pie which has been sliced, there are variations on the way it can be presented. The earliest known pie chart is generally credited to William Playfair's Statistical Breviary of 1801.

Pie charts are very widely used in the business world and the mass media. However, they have been criticized, and many experts recommend avoiding them, as research has shown it is more difficult to make simple comparisons such as the size of different sections of a given pie chart, or to compare data across different pie charts. Some research has shown pie charts perform well for comparing complex combinations of sections (e.g., "A + B vs. C + D"). Commonly recommended alternatives to pie charts in most cases include bar charts, box plots, and dot plots.

↓ Explore More Topics
In this Dossier

Central angle in the context of Subtended angle

In geometry, an angle subtended (from Latin for "stretched under") by a line segment at an arbitrary vertex is formed by the two rays between the vertex and each endpoint of the segment. For example, a side of a triangle subtends the opposite angle.

More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc.For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints.

↑ Return to Menu

Central angle in the context of Angular distance

Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere. When the rays are lines of sight from an observer to two points in space, it is known as the apparent distance or apparent separation.

Angular distance appears in mathematics (in particular geometry and trigonometry) and all natural sciences (e.g., kinematics, astronomy, and geophysics). In the classical mechanics of rotating objects, it appears alongside angular velocity, angular acceleration, angular momentum, moment of inertia and torque.

↑ Return to Menu

Central angle in the context of Inscribed angle theorem

In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle.

Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint.

↑ Return to Menu

Central angle in the context of Circular sector

A circular sector, also known as circle sector or disk sector or simply a sector (symbol: ), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle, r the radius of the circle, and L is the arc length of the minor sector.

↑ Return to Menu