Pneumatic cylinder in the context of "Electromagnetic catapult"

Play Trivia Questions online!

or

Skip to study material about Pneumatic cylinder in the context of "Electromagnetic catapult"

Ad spacer

⭐ Core Definition: Pneumatic cylinder

Pneumatic cylinder, also known as air cylinder, is a mechanical device which uses the power of compressed gas to produce a force in a reciprocating linear motion.

Like in a hydraulic cylinder, something forces a piston to move in the desired direction. The piston is a disc or cylinder, and the piston rod transfers the force it develops to the object to be moved. Engineers sometimes prefer to use pneumatics because they are quieter, cleaner, and do not require large amounts of space for fluid storage.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pneumatic cylinder in the context of Electromagnetic catapult

An electromagnetic catapult is a type of aircraft catapult that uses a linear induction motor system rather than the single-acting pneumatic cylinder (piston) system in conventional steam catapults. The system is used on aircraft carriers to launch fixed-wing carrier-based aircraft, employing the principles of electromagnetism and Lorentz force to accelerate and assist their takeoff from the shorter flight deck runways. Currently, only the United States and China have successfully developed electromagnetic catapults, which are installed on the Gerald R. Ford-class aircraft carriers (currently only the lead ship CVN-78 being operational), the Type 003 aircraft carrier Fujian and the upcoming Type 076 amphibious assault ship Sichuan (51).

Electromagnetic catapults have several advantages over their older, superheated steam-based counterparts. Electromagnetic operation recharges via electric energy and thus much faster than the pressurization process of steam systems, and does not suffer power loss with distance (where volume expansion within the steam catapult cylinder proportionally reduces pressure), temperature changes (which directly affects pressure according to ideal gas law) and leakages (which matters in pressure vessels but is irrelevant in electromagnet systems). The electromagnetic acceleration is also more uniform (unlike steam acceleration, whose accelerative force is always highest at the very initial phase, thus creating a distinct "jolt"), therefore reducing the stress upon the airframe considerably, resulting in increased safety and endurance as well as lower maintenance costs for the aircraft. Electromagnetic catapults are configurable and can assign varying power outputs to different sections, thus allowing them to tailor optimal acceleration to individual aircraft according to different payload weights and takeoff behaviours. Electromagnetic systems are more compact and also weigh less, have fewer linkage components and thus are expected to cost less and require less maintenance, and also require no fresh water boiling for their operation, thus reducing the need for energy-intensive desalination and sophisticated piping systems used in steam catapults, which take up significantly more space below the flight deck.

↓ Explore More Topics
In this Dossier

Pneumatic cylinder in the context of Pneumatics

Pneumatics (from Greek πνεῦμα pneuma 'wind, breath') is the use of gas or pressurized air in mechanical systems.

Pneumatic systems used in industry are commonly powered by compressed air or compressed inert gases. A centrally located and electrically-powered compressor powers cylinders, air motors, pneumatic actuators, and other pneumatic devices. A pneumatic system controlled through manual or automatic solenoid valves is selected when it provides a lower cost, more flexible, or safer alternative to electric motors, and hydraulic actuators.

↑ Return to Menu

Pneumatic cylinder in the context of Working fluid

For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, and hydraulic motors that are assembled into hydraulic machinery, hydraulic drive systems, etc. In pneumatics, the working fluid is air or another gas which transfers force between pneumatic components such as compressors, vacuum pumps, pneumatic cylinders, and pneumatic motors. In pneumatic systems, the working gas also stores energy because it is compressible. (Gases also heat up as they are compressed and cool as they expand. Some gases also condense into liquids as they are compressed and boil as pressure is reduced.)

For passive heat transfer, a working fluid is a gas or liquid, usually called a coolant or heat transfer fluid, that primarily transfers heat into or out of a region of interest by conduction, convection, and/or forced convection (pumped liquid cooling, air cooling, etc.).

↑ Return to Menu

Pneumatic cylinder in the context of Piston

A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder.

↑ Return to Menu

Pneumatic cylinder in the context of Steam hammer

A steam hammer, also called a drop hammer, is an industrial power hammer driven by steam that is used for tasks such as shaping forgings and driving piles. Typically the hammer is attached to a piston that slides within a fixed cylinder, but in some designs the hammer is attached to a cylinder that slides along a fixed piston.

The concept of the steam hammer was described by James Watt in 1784, but it was not until 1840 that the first working steam hammer was built to meet the needs of forging increasingly large iron or steel components. In 1843 there was an acrimonious dispute between François Bourdon of France and James Nasmyth of Britain over who had invented the machine. Bourdon had built the first working machine, but Nasmyth claimed it was built from a copy of his design.

↑ Return to Menu