Piping in the context of Oil refining


Piping in the context of Oil refining

Piping Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Piping in the context of "Oil refining"


⭐ Core Definition: Piping

Within industry, piping is a system of pipes used to convey fluids (liquids and gases) from one location to another. The engineering discipline of piping design studies the efficient transport of fluid.

Industrial process piping (and accompanying in-line components) can be manufactured from wood, fiberglass, glass, steel, aluminum, plastic, copper, and concrete. The in-line components, known as fittings, valves, and other devices, typically sense and control the pressure, flow rate and temperature of the transmitted fluid, and usually are included in the field of piping design (or piping engineering), though the sensors and automatic controlling devices may alternatively be treated as part of instrumentation and control design. Piping systems are documented in piping and instrumentation diagrams (P&IDs). If necessary, pipes can be cleaned by the tube cleaning process.

↓ Menu
HINT:

In this Dossier

Piping in the context of Oil refinery

An oil refinery or petroleum refinery is an industrial process plant where petroleum (crude oil) is transformed and refined into products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefied petroleum gas and petroleum naphtha. Petrochemical feedstock like ethylene and propylene can also be produced directly by cracking crude oil without the need of using refined products of crude oil such as naphtha. The crude oil feedstock has typically been processed by an oil production plant. There is usually an oil depot at or near an oil refinery for the storage of incoming crude oil feedstock as well as bulk liquid products. In 2020, the total capacity of global refineries for crude oil was about 101.2 million barrels per day.

Oil refineries are typically large, sprawling industrial complexes with extensive piping running throughout, carrying streams of fluids between large chemical processing units, such as distillation columns. In many ways, oil refineries use many different technologies and can be thought of as types of chemical plants. Since December 2008, the world's largest oil refinery has been the Jamnagar Refinery owned by Reliance Industries, located in Gujarat, India, with a processing capacity of 1.24 million barrels (197,000 m) per day.

View the full Wikipedia page for Oil refinery
↑ Return to Menu

Piping in the context of Water pipe

Plumbing is any system that conveys fluids for a wide range of applications. Plumbing uses pipes, valves, plumbing fixtures, tanks, and other apparatuses to convey fluids. Heating and cooling (HVAC), waste removal, and potable water delivery are among the most common uses for plumbing, but it is not limited to these applications. The word derives from the Latin for lead, plumbum, as the first effective pipes used in the Roman era were lead pipes.

In the developed world, plumbing infrastructure is critical to public health and sanitation.

View the full Wikipedia page for Water pipe
↑ Return to Menu

Piping in the context of Confined space

A confined space is a space with limited entry and egress and not suitable for human inhabitants. Alternative names for a confined space are enclosed space and dangerous space. An example is the interior of a storage tank, occasionally entered by maintenance workers but not intended for human occupancy. Hazards in a confined space often include harmful dust or gases, asphyxiation, submersion in liquids or free-flowing granular solids (for example, grain bins), electrocution, or entrapment.

Confined space accidents are of particular concern in occupational safety and health due to the hazards that they pose to the victim and subsequently to a rescue team. Confined space training outlines the skills and protocols for safe entry to confined spaces, and includes precautions such as locking and tagging out connecting piping, testing of breathable air quality, forced ventilation, observation of workers in the space, and a predetermined rescue plan with appropriate safety harnesses and other rescue equipment standing by.

View the full Wikipedia page for Confined space
↑ Return to Menu

Piping in the context of Flint water crisis

The Flint water crisis was a public health crisis from 2014 to 2019 which involved the drinking water for the city of Flint, Michigan, being contaminated with lead and possibly Legionella bacteria.

In April 2014, during a financial crisis, state-appointed emergency manager Darnell Earley changed Flint's water source from the Detroit Water and Sewerage Department (sourced from Lake Huron and the Detroit River) to the Flint River. Residents complained about the taste, smell, and appearance of the water. Officials failed to apply corrosion inhibitors to the water, which resulted in lead from aging pipes leaching into the water supply, exposing around 100,000 residents to elevated lead levels. A pair of scientific studies confirmed that lead contamination was present in the water supply. The city switched back to the Detroit water system on October 16, 2015. It later signed a 30-year contract with the new Great Lakes Water Authority (GLWA) on November 22, 2017.

View the full Wikipedia page for Flint water crisis
↑ Return to Menu

Piping in the context of Vapor barrier

A vapor barrier (or vapour barrier) is any material used for damp proofing, typically a plastic or foil sheet, that resists diffusion of moisture through the wall, floor, ceiling, or roof assemblies of buildings and of packaging to prevent interstitial condensation. Technically, many of these materials are only vapor retarders as they have varying degrees of permeability.

Materials have a moisture vapor transmission rate (MVTR) that is established by standard test methods. One common set of units is g/m·day or g/100in·day. Permeability can be reported in perms, a measure of the rate of transfer of water vapor through a material (1.0 US perm = 1.0 grain/square-foot·hour·inch of mercury ≈ 57 SI perm = 57 ng/s·m·Pa). American building codes started classifying vapor retarders in the 2007 IRC supplement. They are Class I <0.1 perm, Class II 0.1 - 1 perm and Class III 1-10 perm when tested in accordance with the ASTM E96 desiccant, dry cup or method A. Vapor-retarding materials are generally categorized as:

View the full Wikipedia page for Vapor barrier
↑ Return to Menu

Piping in the context of Housing (engineering)

In engineering, a housing or enclosure is a container, a protective exterior (e.g. shell) or an enclosing structural element (e.g. chassis or exoskeleton) designed to enable easier handling, provide attachment points for internal mechanisms (e.g. mounting brackets for electrical components, cables and pipings), maintain cleanliness of the contents by shielding dirt/dust, fouling and other contaminations, or protect interior mechanisms (e.g. delicate integrated electrical fittings) from structural stress and/or potential physical, thermal, chemical, biological or radiational damages from the surrounding environment. Housing may also be the body of a device, vital to its function.

View the full Wikipedia page for Housing (engineering)
↑ Return to Menu

Piping in the context of Bar stock

Bar stock, also (colloquially) known as blank, slug or billet, is a common form of raw purified metal, used by industry to manufacture metal parts and products. Bar stock is available in a variety of extrusion shapes and lengths. The most common shapes are round (circular cross-section), rectangular, square and hexagonal. A bar is characterised by an "enclosed invariant convex cross-section", meaning that pipes, angle stock and objects with varying diameter are not considered bar stock.

Bar stock is commonly processed by a sequence of sawing, turning, milling, drilling and grinding to produce a final product, often vastly different from the original stock. In some cases, the process is partially automated by specialized equipment which feeds the stock into the appropriate processing machine.

View the full Wikipedia page for Bar stock
↑ Return to Menu

Piping in the context of Expansion joint

An expansion joint, or movement joint, is an assembly designed to hold parts together while safely absorbing temperature-induced expansion and contraction of building materials. They are commonly found between sections of buildings, bridges, sidewalks, railway tracks, piping systems, ships, and other structures.

Building faces, concrete slabs, and pipelines expand and contract due to warming and cooling from diurnal and seasonal variation, or due to other heat sources. Before expansion joint gaps were built into these structures, they would crack under the stress induced.

View the full Wikipedia page for Expansion joint
↑ Return to Menu

Piping in the context of Electromagnetic catapult

An electromagnetic catapult is a type of aircraft catapult that uses a linear induction motor system rather than the single-acting pneumatic cylinder (piston) system in conventional steam catapults. The system is used on aircraft carriers to launch fixed-wing carrier-based aircraft, employing the principles of electromagnetism and Lorentz force to accelerate and assist their takeoff from the shorter flight deck runways. Currently, only the United States and China have successfully developed electromagnetic catapults, which are installed on the Gerald R. Ford-class aircraft carriers (currently only the lead ship CVN-78 being operational), the Type 003 aircraft carrier Fujian and the upcoming Type 076 amphibious assault ship Sichuan (51).

Electromagnetic catapults have several advantages over their older, superheated steam-based counterparts. Electromagnetic operation recharges via electric energy and thus much faster than the pressurization process of steam systems, and does not suffer power loss with distance (where volume expansion within the steam catapult cylinder proportionally reduces pressure), temperature changes (which directly affects pressure according to ideal gas law) and leakages (which matters in pressure vessels but is irrelevant in electromagnet systems). The electromagnetic acceleration is also more uniform (unlike steam acceleration, whose accelerative force is always highest at the very initial phase, thus creating a distinct "jolt"), therefore reducing the stress upon the airframe considerably, resulting in increased safety and endurance as well as lower maintenance costs for the aircraft. Electromagnetic catapults are configurable and can assign varying power outputs to different sections, thus allowing them to tailor optimal acceleration to individual aircraft according to different payload weights and takeoff behaviours. Electromagnetic systems are more compact and also weigh less, have fewer linkage components and thus are expected to cost less and require less maintenance, and also require no fresh water boiling for their operation, thus reducing the need for energy-intensive desalination and sophisticated piping systems used in steam catapults, which take up significantly more space below the flight deck.

View the full Wikipedia page for Electromagnetic catapult
↑ Return to Menu

Piping in the context of Stave (wood)

A stave is a narrow length of wood with a slightly bevelled edge to form the sides of barrels, tanks, tubs, vats and pipelines, originally handmade by coopers. They have been used in the construction of large holding tanks and penstocks at hydro power developments. They are also used in the construction of certain musical instruments with rounded bodies or backs.

View the full Wikipedia page for Stave (wood)
↑ Return to Menu

Piping in the context of Hose

A hose, also called a hose-pipe, is a flexible hollow tube or pipe designed to carry fluids from one location to another, often from a faucet or hydrant.

Early hoses were made of leather, flax, and cotton. World War II lead to increased industrial development and the invention of synthetic rubber materials with higher chemical resistance. Modern hoses may be made of rubber, canvas, and helically wound wire. Hoses may also be made from plastics such as polyvinyl chloride and polytetrafluoroethylene. Materials such as stainless steel and polyethylene terephthalate are used for hoses capable of carrying low-temperature liquids such as liquid oxygen and liquid nitrogen.

View the full Wikipedia page for Hose
↑ Return to Menu