Physics in the medieval Islamic world in the context of "Statics"

Play Trivia Questions online!

or

Skip to study material about Physics in the medieval Islamic world in the context of "Statics"

Ad spacer

⭐ Core Definition: Physics in the medieval Islamic world

The natural sciences saw various advancements during the Golden Age of Islam (from roughly the mid 8th to the mid 13th centuries), adding a number of innovations to the Transmission of the Classics (such as Aristotle, Ptolemy, Euclid, Neoplatonism). During this period, Islamic theology was encouraging of thinkers to find knowledge. Thinkers from this period included Al-Farabi, Abu Bishr Matta, Ibn Sina, al-Hassan Ibn al-Haytham and Ibn Bajjah. These works and the important commentaries on them were the wellspring of science during the medieval period. They were translated into Arabic, the lingua franca of this period.

Islamic scholarship in the sciences had inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further. However the Islamic world had a greater respect for knowledge gained from empirical observation, and believed that the universe is governed by a single set of laws. Their use of empirical observation led to the formation of crude forms of the scientific method. The study of physics in the Islamic world started in Iraq and Egypt. Fields of physics studied in this period include optics, mechanics (including statics, dynamics, kinematics and motion), and astronomy.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Physics in the medieval Islamic world in the context of Science in the medieval Islamic world

Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Abbasid Caliphate of Baghdad, the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids and the Buyids in Persia and beyond, spanning the period roughly between 786 and 1258. Islamic scientific achievements encompassed a wide range of subject areas, especially astronomy, mathematics, and medicine. Other subjects of scientific inquiry included alchemy and chemistry, botany and agronomy, geography and cartography, ophthalmology, pharmacology, physics, and zoology.

Medieval Islamic science had practical purposes as well as the goal of understanding. For example, astronomy was useful for determining the Qibla, the direction in which to pray, botany had practical application in agriculture, as in the works of Ibn Bassal and Ibn al-'Awwam, and geography enabled Abu Zayd al-Balkhi to make accurate maps. Islamic mathematicians such as Al-Khwarizmi, Avicenna and Jamshīd al-Kāshī made advances in algebra, trigonometry, geometry and Arabic numerals. Islamic doctors described diseases like smallpox and measles, and challenged classical Greek medical theory. Al-Biruni, Avicenna and others described the preparation of hundreds of drugs made from medicinal plants and chemical compounds. Islamic physicists such as Ibn Al-Haytham, Al-Bīrūnī and others studied optics and mechanics as well as astronomy, and criticised Aristotle's view of motion.

↑ Return to Menu

Physics in the medieval Islamic world in the context of Al-Farabi

Abu Nasr Muhammad al-Farabi (Arabic: أبو نصر محمد الفارابي, romanizedAbū Naṣr Muḥammad al-Fārābī; c. 870 – 14 December 950–12 January 951), known in the Latin West as Alpharabius, was an early Islamic philosopher and music theorist. He has been designated as "Father of Islamic Neoplatonism", and the "Founder of Islamic Political Philosophy".

Al-Farabi's fields of philosophical interest included—but not limited to, philosophy of society and religion; philosophy of language and logic; psychology and epistemology; metaphysics, political philosophy, and ethics. He was an expert in both practical musicianship and music theory, and although he was not intrinsically a scientist, his works incorporate astronomy, mathematics, cosmology, and physics.

↑ Return to Menu

Physics in the medieval Islamic world in the context of Ibn Al-Haytham

Ibn al-Haytham, Latinized as Alhazen (c. 965 – c. 1040) was a mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq. Referred to as "the father of modern optics", he made significant contributions to the principles of optics and visual perception in particular. His most influential work is titled Kitāb al-Manāẓir (Arabic: كتاب المناظر, "Book of Optics"), written during 1011–1021, which survived in a Latin edition. The works of Alhazen were frequently cited during the scientific revolution by Isaac Newton, Johannes Kepler, Christiaan Huygens, and Galileo Galilei.

Ibn al-Haytham was the first to correctly explain vision as intromissive rather than extramissive, and to argue that vision occurs in the brain, pointing to observations that it is subjective and affected by personal experience. He also stated the principle of least time for refraction which would later become Fermat's principle. He made major contributions to catoptrics and dioptrics by studying reflection, refraction and nature of images formed by light rays. Ibn al-Haytham was an early proponent of the concept that a hypothesis must be supported by experiments based on confirmable procedures or mathematical reasoning – an early pioneer in the scientific method five centuries before Renaissance scientists, he is sometimes described as the world's "first true scientist". He was also a polymath, writing on philosophy, theology and medicine.

↑ Return to Menu