Jamshīd al-Kāshī in the context of "Science in the medieval Islamic world"

⭐ In the context of Science in the medieval Islamic world, Jamshīd al-Kāshī is considered a key figure in the development of which mathematical fields?

Ad spacer

⭐ Core Definition: Jamshīd al-Kāshī

Ghiyāth al-Dīn Jamshīd Masʿūd al-Kāshī (or al-Kāshānī) (Persian: غیاث‌الدین جمشید کاشانی Ghiyās-ud-dīn Jamshīd Kāshānī; c. 1380 – 22 June 1429) was a Persian astronomer and mathematician during the reign of Tamerlane.

Much of al-Kāshī's work was not brought to Europe and still, even the extant work, remains unpublished in any form.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Jamshīd al-Kāshī in the context of Science in the medieval Islamic world

Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Abbasid Caliphate of Baghdad, the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids and the Buyids in Persia and beyond, spanning the period roughly between 786 and 1258. Islamic scientific achievements encompassed a wide range of subject areas, especially astronomy, mathematics, and medicine. Other subjects of scientific inquiry included alchemy and chemistry, botany and agronomy, geography and cartography, ophthalmology, pharmacology, physics, and zoology.

Medieval Islamic science had practical purposes as well as the goal of understanding. For example, astronomy was useful for determining the Qibla, the direction in which to pray, botany had practical application in agriculture, as in the works of Ibn Bassal and Ibn al-'Awwam, and geography enabled Abu Zayd al-Balkhi to make accurate maps. Islamic mathematicians such as Al-Khwarizmi, Avicenna and Jamshīd al-Kāshī made advances in algebra, trigonometry, geometry and Arabic numerals. Islamic doctors described diseases like smallpox and measles, and challenged classical Greek medical theory. Al-Biruni, Avicenna and others described the preparation of hundreds of drugs made from medicinal plants and chemical compounds. Islamic physicists such as Ibn Al-Haytham, Al-Bīrūnī and others studied optics and mechanics as well as astronomy, and criticised Aristotle's view of motion.

↓ Explore More Topics
In this Dossier

Jamshīd al-Kāshī in the context of Approximations of π

Approximations for the mathematical constant pi (π) in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

Further progress was not made until the 14th century, when Madhava of Sangamagrama developed approximations correct to eleven and then thirteen digits. Jamshīd al-Kāshī achieved sixteen digits next. Early modern mathematicians reached an accuracy of 35 digits by the beginning of the 17th century (Ludolph van Ceulen), and 126 digits by the 19th century (Jurij Vega).

↑ Return to Menu