Phobos (moon) in the context of "Human mission to Mars"

Play Trivia Questions online!

or

Skip to study material about Phobos (moon) in the context of "Human mission to Mars"




⭐ Core Definition: Phobos (moon)

Phobos (/ˈfbəs/) is the innermost and larger of the two natural satellites of Mars, the other being Deimos. The two moons were discovered in 1877 by American astronomer Asaph Hall. Phobos is named after the Greek god of fear and panic, who is the son of Ares (Mars) and twin brother of Deimos.

Phobos is a small, irregularly shaped object with a mean radius of 11 km (7 mi). It orbits 6,000 km (3,700 mi) from the Martian surface, closer to its primary body than any other known natural satellite to a planet. It orbits Mars much faster than Mars rotates and completes an orbit in just 7 hours and 39 minutes. As a result, from the surface of Mars it appears to rise in the west, move across the sky in 4 hours and 15 minutes or less, and set in the east, twice each Martian day. Phobos is one of the least reflective bodies in the Solar System, with an albedo of 0.071. Surface temperatures range from about −4 °C (25 °F) on the sunlit side to −112 °C (−170 °F) on the shadowed side. The notable surface feature is the large impact crater Stickney, which takes up a substantial proportion of the moon's surface. The surface is also marked by many grooves, and there are numerous theories as to how these grooves were formed.

↓ Menu

In this Dossier

Phobos (moon) in the context of Mars

Mars is the fourth planet from the Sun. It is also known as the "Red Planet", for its orange-red appearance. Mars is a desert-like rocky planet with a tenuous atmosphere that is primarily carbon dioxide (CO2). At the average surface level the atmospheric pressure is a few thousandths of Earth's, atmospheric temperature ranges from −153 to 20 °C (−243 to 68 °F), and cosmic radiation is high. Mars retains some water, in the ground as well as thinly in the atmosphere, forming cirrus clouds, fog, frost, larger polar regions of permafrost and ice caps (with seasonal CO2 snow), but no bodies of liquid surface water. Its surface gravity is roughly a third of Earth's or double that of the Moon. Its diameter, 6,779 km (4,212 mi), is about half the Earth's, or twice the Moon's, and its surface area is the size of all the dry land of Earth.

Fine dust is prevalent across the surface and the atmosphere, being picked up and spread at the low Martian gravity even by the weak wind of the tenuous atmosphere.The terrain of Mars roughly follows a north-south divide, the Martian dichotomy, with the northern hemisphere mainly consisting of relatively flat, low lying plains, and the southern hemisphere of cratered highlands. Geologically, the planet is fairly active with marsquakes trembling underneath the ground, but also hosts many enormous volcanoes that are extinct (the tallest is Olympus Mons, 21.9 km or 13.6 mi tall), as well as one of the largest canyons in the Solar System (Valles Marineris, 4,000 km or 2,500 mi long). Mars has two natural satellites that are small and irregular in shape: Phobos and Deimos. With a significant axial tilt of 25 degrees, Mars experiences seasons, like Earth (which has an axial tilt of 23.5 degrees). A Martian solar year is equal to 1.88 Earth years (687 Earth days), a Martian solar day (sol) is equal to 24.6 hours.

↑ Return to Menu

Phobos (moon) in the context of Astronomical transit

In astronomy, a transit (or astronomical transit) is the passage of a celestial body directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, covering a small portion of it.

The word "transit" refers to cases where the nearer object appears smaller than the more distant object. Cases where the nearer object appears larger and completely hides the more distant object are known as occultations.

↑ Return to Menu

Phobos (moon) in the context of Alvarez hypothesis

The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatán Peninsula, at Chicxulub, Mexico. The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who first suggested it in 1980. Shortly afterwards, and independently, the same was suggested by Dutch paleontologist Jan Smit.

In March 2010, an international panel of scientists endorsed the asteroid hypothesis, specifically the Chicxulub impact, as being the cause of the extinction. A team of 41 scientists reviewed 20 years of scientific literature and in so doing also ruled out other theories such as massive volcanism. They had determined that a space rock 10–15 km (6–9 mi) in diameter hurtled into earth at Chicxulub. For comparison, the Martian moon Phobos has a diameter of 22 km (14 mi), and Mount Everest is just under 9 km (5.6 mi). The collision would have released the same energy as 100,000,000 megatonnes of TNT (4.2×10 J), over a billion times the energy of the atomic bombs dropped on Hiroshima and Nagasaki.

↑ Return to Menu

Phobos (moon) in the context of Moons of Mars

The two moons of Mars are Phobos and Deimos. They are irregular in shape. Both were discovered by American astronomer Asaph Hall in August 1877 and are named after the Greek mythological twin characters Phobos (fear and panic) and Deimos (terror and dread) who accompanied their father Ares (Mars in Roman mythology, hence the name of the planet) into battle.

Compared to the Earth's Moon, the moons Phobos and Deimos are very small. Phobos has a diameter of 22.2 km (13.8 mi) and a mass of 1.08×10 kg, while Deimos measures 12.6 km (7.8 mi) across, with a mass of 1.5×10 kg. Phobos orbits closer to Mars, with a semi-major axis of 9,377 km (5,827 mi) and an orbital period of 7.66 hours; while Deimos orbits farther with a semi-major axis of 23,460 km (14,580 mi) and an orbital period of 30.35 hours.

↑ Return to Menu

Phobos (moon) in the context of Deimos (moon)

Deimos (/ˈdməs/) is the smaller and outer of the two natural satellites of Mars, the other being Phobos. Deimos has a mean radius of 6.2 km (3.9 mi) and takes 30.3 hours to orbit Mars. Deimos is 23,460 km (14,580 mi) from Mars, much farther than Mars's other moon, Phobos. It is named after Deimos, the Ancient Greek god and personification of dread and terror.

↑ Return to Menu

Phobos (moon) in the context of D-type asteroid

D-type asteroids have a very low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interiors. D-type asteroids are found in the outer asteroid belt and beyond; examples are 152 Atala, 944 Hidalgo and most Jupiter trojans. It has been suggested that the Tagish Lake meteorite was a fragment from a D-type asteroid, and that the Martian moon Phobos is closely related.

The Nice model suggests that D-type asteroids may have originated in the Kuiper belt. 46 D-type asteroids are known, including: 3552 Don Quixote, 944 Hidalgo, 624 Hektor, and 10199 Chariklo.

↑ Return to Menu

Phobos (moon) in the context of Solar System object

The following is a list of Solar System objects by orbit, ordered by increasing distance from the Sun. Most named objects in this list have a diameter of 500 km or more.

↑ Return to Menu