Phenotypic in the context of "Genetic predisposition"

Play Trivia Questions online!

or

Skip to study material about Phenotypic in the context of "Genetic predisposition"

Ad spacer

⭐ Core Definition: Phenotypic

In genetics, the phenotype (from Ancient Greek φαίνω (phaínō) 'to appear, show' and τύπος (túpos) 'mark, type') is the set of observable characteristics or traits of an organism. The term covers all traits of an organism other than its genome, however transitory: the organism's morphology (physical form and structure), its developmental processes, its biochemical and physiological properties whether reversible or irreversible, and all its behavior, from a peacock's display to the phone number you half remember. An organism's phenotype results from two basic factors: the expression of an organism's unique profile of genes (its genotype) and the influence of environmental factors experienced by that same organism which influence the variable expression of said genes, and thereby shape the resulting profile of defining traits. Since the developmental process is a complex interplay of gene-environment, gene-gene interactions, there is a high degree of phenotypic variation in a given population that extends beyond mere genotypic variation.

A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Phenotypic in the context of Genetic predisposition

Genetic predisposition refers to a genetic characteristic which influences the possible phenotypic development of an individual organism within a species or population under the influence of environmental conditions. The term genetic susceptibility is often used synonymously with genetic predisposition and is further defined as the inherited risk for specific conditions, based on genetic variants. While environmental factors can influence disease onset, genetic predisposition plays a role in inherited risk of conditions, such as various cancers. At the molecular level, genetic predisposition often involves specific gene mutation, regulatory pathways, or epigenetic modifications that alter cellular processes, increasing disease risk.

↓ Explore More Topics
In this Dossier

Phenotypic in the context of Ecological communities

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

Community ecology or synecology is the study of the interactions between species in communities on many spatial and temporal scales, including the distribution, structure, abundance, demography, and interactions of coexisting populations. The primary focus of community ecology is on the interactions between populations as determined by specific genotypic and phenotypic characteristics. It is important to understand the origin, maintenance, and consequences of species diversity when evaluating community ecology.

↑ Return to Menu

Phenotypic in the context of Virus classification

Virus classification is the process of naming viruses and placing them into a taxonomic system similar to the classification systems used for cellular organisms.

Viruses are classified by phenotypic characteristics, such as morphology, nucleic acid type, mode of replication, host organisms, and the type of disease they cause. The formal taxonomic classification of viruses is the responsibility of the International Committee on Taxonomy of Viruses (ICTV) system, although the Baltimore classification system can be used to place viruses into one of seven groups based on their manner of mRNA synthesis. Specific naming conventions and further classification guidelines are set out by the ICTV.

↑ Return to Menu

Phenotypic in the context of Epistasis

Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dependent on the genetic background in which it appears. Epistatic mutations therefore have different effects on their own than when they occur together. Originally, the term epistasis specifically meant that the effect of a gene variant is masked by that of a different gene.

The concept of epistasis originated in genetics in 1907 but is now used in biochemistry, computational biology and evolutionary biology. The phenomenon arises due to interactions, either between genes (such as mutations also being needed in regulators of gene expression) or within them (multiple mutations being needed before the gene loses function), leading to non-linear effects. Epistasis has a great influence on the shape of evolutionary landscapes, which leads to profound consequences for evolution and for the evolvability of phenotypic traits.

↑ Return to Menu