Permutation group in the context of Arthur Cayley


Permutation group in the context of Arthur Cayley

Permutation group Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Permutation group in the context of "Arthur Cayley"


⭐ Core Definition: Permutation group

In mathematics, a permutation group is a group G whose elements are permutations of a given set M and whose group operation is the composition of permutations in G (which are thought of as bijective functions from the set M to itself). The group of all permutations of a set M is the symmetric group of M, often written as Sym(M). The term permutation group thus means a subgroup of the symmetric group. If M = {1, 2, ..., n} then Sym(M) is usually denoted by Sn, and may be called the symmetric group on n letters.

By Cayley's theorem, every group is isomorphic to some permutation group.

↓ Menu
HINT:

👉 Permutation group in the context of Arthur Cayley

Arthur Cayley FRS (/ˈkli/; 16 August 1821 – 26 January 1895) was an English mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics, and was a professor at Trinity College, Cambridge for 35 years.

He postulated what is now known as the Cayley–Hamilton theorem—that every square matrix is a root of its own characteristic polynomial, and verified it for matrices of order 2 and 3. He was the first to define the concept of an abstract group, a set with a binary operation satisfying certain laws, as opposed to Évariste Galois' concept of permutation groups. In group theory, Cayley tables, Cayley graphs, and Cayley's theorem are named in his honour, as well as Cayley's formula in combinatorics.

↓ Explore More Topics
In this Dossier

Permutation group in the context of Group theory

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

Various physical systems, such as crystals and the hydrogen atom, and three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also central to public key cryptography.

View the full Wikipedia page for Group theory
↑ Return to Menu

Permutation group in the context of Augustin-Louis Cauchy

Baron Augustin-Louis Cauchy FRS FRSE (UK: /ˈkʃi/ KOH-shee, /ˈkʃi / KOW-shee, US: /kˈʃ / koh-SHEE; French: [oɡystɛ̃ lwi koʃi]; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real analysis), pioneered the field complex analysis, and the study of permutation groups in abstract algebra. Cauchy also contributed to a number of topics in mathematical physics, notably continuum mechanics.

A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated:

View the full Wikipedia page for Augustin-Louis Cauchy
↑ Return to Menu

Permutation group in the context of Galois group

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory.

View the full Wikipedia page for Galois group
↑ Return to Menu