Abstract algebra in the context of "Group theory"

Play Trivia Questions online!

or

Skip to study material about Abstract algebra in the context of "Group theory"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Abstract algebra in the context of Lattice (order)

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These lattice-like structures all admit order-theoretic as well as algebraic descriptions.

↑ Return to Menu

Abstract algebra in the context of Elementary algebra

Elementary algebra, also known as high school algebra or college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces numerical variables (quantities without fixed values).

This use of variables entails use of algebraic notation and an understanding of the general rules of the operations introduced in arithmetic: addition, subtraction, multiplication, division, etc. Unlike abstract algebra, elementary algebra is not concerned with algebraic structures outside the realm of real and complex numbers.

↑ Return to Menu

Abstract algebra in the context of Richard Dedekind

Julius Wilhelm Richard Dedekind (/ˈddɪkɪnd/; German: [ˈdeːdəˌkɪnt]; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as logicism.

↑ Return to Menu

Abstract algebra in the context of Semantics of logic

In logic, the semantics or formal semantics is the study of the meaning and interpretation of formal languages, formal systems, and (idealizations of) natural languages. This field seeks to provide precise mathematical models that capture the pre-theoretic notions of truth, validity, and logical consequence. While logical syntax concerns the formal rules for constructing well-formed expressions, logical semantics establishes frameworks for determining when these expressions are true and what follows from them.

The development of formal semantics has led to several influential approaches, including model-theoretic semantics (pioneered by Alfred Tarski), proof-theoretic semantics (associated with Gerhard Gentzen and Michael Dummett), possible worlds semantics (developed by Saul Kripke and others for modal logic and related systems), algebraic semantics (connecting logic to abstract algebra), and game semantics (interpreting logical validity through game-theoretic concepts). These diverse approaches reflect different philosophical perspectives on the nature of meaning and truth in logical systems.

↑ Return to Menu

Abstract algebra in the context of Algebraic geometry

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular points, inflection points and points at infinity. More advanced questions involve the topology of the curve and the relationship between curves defined by different equations.

↑ Return to Menu

Abstract algebra in the context of Algebraic number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

↑ Return to Menu

Abstract algebra in the context of Finitely generated abelian group

In abstract algebra, an abelian group is called finitely generated if there exist finitely many elements in such that every in can be written in the form for some integers . In this case, we say that the set is a generating set of or that generate . So, finitely generated abelian groups can be thought of as a generalization of cyclic groups.

Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified.

↑ Return to Menu

Abstract algebra in the context of Generating set of a group

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.

In other words, if is a subset of a group , then , the subgroup generated by , is the smallest subgroup of containing every element of , which is equal to the intersection over all subgroups containing the elements of ; equivalently, is the subgroup of all elements of that can be expressed as the finite product of elements in and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.)

↑ Return to Menu

Abstract algebra in the context of Virtually

In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup such that H has property P.

Common uses for this would be when P is abelian, nilpotent, solvable or free. For example, virtually solvable groups are one of the two alternatives in the Tits alternative, while Gromov's theorem states that the finitely generated groups with polynomial growth are precisely the finitely generated virtually nilpotent groups.

↑ Return to Menu