Pelvis in the context of Pelvic thrust


Pelvis in the context of Pelvic thrust

Pelvis Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Pelvis in the context of "Pelvic thrust"


⭐ Core Definition: Pelvis

The pelvis (pl.: pelves or pelvises) is the lower part of an anatomical trunk, between the abdomen and the thighs (sometimes also called pelvic region), together with its embedded skeleton (sometimes also called bony pelvis or pelvic skeleton).

The pelvic region of the trunk includes the bony pelvis, the pelvic cavity (the space enclosed by the bony pelvis), the pelvic floor, below the pelvic cavity, and the perineum, below the pelvic floor. The pelvic skeleton is formed in the area of the back, by the sacrum and the coccyx and anteriorly and to the left and right sides, by a pair of hip bones.

↓ Menu
HINT:

👉 Pelvis in the context of Pelvic thrust

The pelvic thrust is the thrusting motion of the pelvic region, which is used for a variety of activities, such as dance, exercise, or sexual activity.

↓ Explore More Topics
In this Dossier

Pelvis in the context of Shoulder girdle

The shoulder girdle or pectoral girdle is the set of bones in the appendicular skeleton which connects to the arm on each side. In humans, it consists of the clavicle and scapula; in those species with three bones in the shoulder, it consists of the clavicle, scapula, and coracoid. Some mammalian species (such as the dog and the horse) have only the scapula.

The pectoral girdles are to the upper limbs as the pelvic girdle is to the lower limbs; the girdles are the part of the appendicular skeleton that anchor the appendages to the axial skeleton.

View the full Wikipedia page for Shoulder girdle
↑ Return to Menu

Pelvis in the context of Limb (anatomy)

A limb (from Old English lim, meaning "body part") is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing, terrestrial locomotion and physical interaction with other objects. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, climbing, grasping, touching and striking.

All tetrapods have four limbs that are organized into two bilaterally symmetrical pairs, with one pair at each end of the torso, which phylogenetically correspond to the four paired fins (pectoral and pelvic fins) of their fish (sarcopterygian) ancestors. The cranial pair (i.e. closer to the head) of limbs are known as the forelimbs or front legs, and the caudal pair (i.e. closer to the tail or coccyx) are the hindlimbs or back legs. In animals with a more erect bipedal posture (mainly hominid primates, particularly humans), the forelimbs and hindlimbs are often called upper and lower limbs, respectively. The fore-/upper limbs are connected to the thoracic cage via the pectoral/shoulder girdles, and the hind-/lower limbs are connected to the pelvis via the hip joints. Many animals, especially the arboreal species, have prehensile forelimbs adapted for grasping and climbing, while some (mostly primates) can also use hindlimbs for grasping. Some animals (birds and bats) have expanded forelimbs (and sometimes hindlimbs as well) with specialized feathers or membranes to achieve lift and fly. Aquatic and semiaquatic tetrapods usually have limb features (such as webbings) adapted to better provide propulsion in water, while marine mammals and sea turtles have convergently evolved flattened, paddle-like limbs known as flippers.

View the full Wikipedia page for Limb (anatomy)
↑ Return to Menu

Pelvis in the context of Man

A man is an adult male human. Before adulthood, a male child or adolescent is referred to as a boy.

Like most other male mammals, a man's genome usually inherits an X chromosome from the mother and a Y chromosome from the father. Sex differentiation of the male fetus is governed by the SRY gene on the Y chromosome. During puberty, hormones which stimulate androgen production result in the development of secondary sexual characteristics that result in even more differences between the sexes. These include greater muscle mass, greater height, the growth of facial hair and a lower body fat composition. Male anatomy is distinguished from female anatomy by the male reproductive system, which includes the testicles, sperm ducts, prostate gland and epididymides, and penis. Secondary sex characteristics include a narrower pelvis and hips, and smaller breasts and nipples.

View the full Wikipedia page for Man
↑ Return to Menu

Pelvis in the context of Woman

A woman is an adult female human. Before adulthood, a female child or adolescent is referred to as a girl.

Typically, women inherit a pair of X chromosomes, one from each parent. Sex differentiation of the female fetus is governed by the lack of a present functioning SRY gene on either one of the respective sex chromosomes. Female anatomy is distinguished from male anatomy by the female reproductive system, which includes the ovaries, fallopian tubes, uterus, vagina, and vulva. A woman generally has a wider pelvis, broader hips, and larger breasts than a man. These characteristics can facilitate pregnancy, childbirth and breastfeeding. Women typically have less facial and other body hair, have a higher body fat composition, and are on average shorter and less muscular than men. Women are at greater risk of certain diseases like breast cancer, and at lower risk of other diseases like lung cancer.

View the full Wikipedia page for Woman
↑ Return to Menu

Pelvis in the context of Abdomen

An abdomen (also belly or stomach in vertebrates, or metasoma in arthropods) is the front part of the torso between the thorax (chest) and pelvis in humans and in other vertebrates. The area occupied by the abdomen is called the abdominal cavity. In arthropods, it is the posterior tagma of the body; it follows the thorax or cephalothorax.

In humans, the abdomen stretches from the thorax at the thoracic diaphragm to the pelvis at the pelvic brim. The pelvic brim stretches from the lumbosacral joint (the intervertebral disc between L5 and S1) to the pubic symphysis and is the edge of the pelvic inlet. The space above this inlet and under the thoracic diaphragm is termed the abdominal cavity. The boundary of the abdominal cavity is the abdominal wall in the front and the peritoneal surface at the rear.

View the full Wikipedia page for Abdomen
↑ Return to Menu

Pelvis in the context of Large intestine

The large intestine, also known as the large bowel, is the last part of the gastrointestinal tract and of the digestive system in tetrapods. Water is absorbed here and the remaining waste material is stored in the rectum as feces before being removed by defecation. The colon (progressing from the ascending colon to the transverse, the descending and finally the sigmoid colon) is the longest portion of the large intestine, and the terms "large intestine" and "colon" are often used interchangeably, but most sources define the large intestine as the combination of the cecum, colon, rectum, and anal canal. Some other sources exclude the anal canal.

In humans, the large intestine begins in the right iliac region of the pelvis, just at or below the waist, where it is joined to the end of the small intestine at the cecum, via the ileocecal valve. It then continues as the colon ascending the abdomen, across the width of the abdominal cavity as the transverse colon, and then descending to the rectum and its endpoint at the anal canal. Overall, in humans, the large intestine is about 1.5 metres (5 ft) long, which is about one-fifth of the whole length of the human gastrointestinal tract.

View the full Wikipedia page for Large intestine
↑ Return to Menu

Pelvis in the context of Lumbar spine

The lumbar vertebrae are located between the thoracic vertebrae and pelvis. They form the lower part of the back in humans, and the tail end of the back in quadrupeds. In humans, there are five lumbar vertebrae. The term is used to describe the anatomy of humans and quadrupeds, such as horses, pigs, or cattle. These bones are found in particular cuts of meat, including tenderloin or sirloin steak.

View the full Wikipedia page for Lumbar spine
↑ Return to Menu

Pelvis in the context of Lordosis

Lordosis is historically defined as an abnormal inward curvature of the lumbar spine. However, the terms lordosis and lordotic are also used to refer to the normal inward curvature of the lumbar and cervical regions of the human spine. Similarly, kyphosis historically refers to abnormal convex curvature of the spine. The normal outward (convex) curvature in the thoracic and sacral regions is also termed kyphosis or kyphotic. The term comes from Greek lordos 'bent backward'.

Lordosis in the human spine makes it easier for humans to bring the bulk of their mass over the pelvis. This allows for a much more efficient walking gait than that of other primates, whose inflexible spines cause them to resort to an inefficient forward-leaning "bent-knee, bent-waist" gait. As such, lordosis in the human spine is considered one of the primary physiological adaptations of the human skeleton that allows for human gait to be as energetically efficient as it is.

View the full Wikipedia page for Lordosis
↑ Return to Menu

Pelvis in the context of Orgasm

Orgasm (from Greek ὀργασμός, orgasmos; "excitement, swelling"), sexual climax, or simply climax, is the sudden release of accumulated sexual excitement during the sexual response cycle, characterized by intense sexual pleasure resulting in rhythmic, involuntary muscular contractions in the pelvic region. Orgasms are controlled by the involuntary or autonomic nervous system and are experienced by both males and females; the body's response includes muscular spasms (in multiple areas), a general euphoric sensation, and, frequently, body movements and vocalizations. The period after orgasm (known as the resolution phase) is typically a relaxing experience due to the release of the neurohormones oxytocin and prolactin, as well as endorphins (or "endogenous morphine").

Human orgasms usually result from physical sexual stimulation of the penis in males (typically accompanied by ejaculation) and of the clitoris (and vagina) in females. Sexual stimulation can be by masturbation or with a sexual partner (penetrative sex, non-penetrative sex, or other sexual activity). Physical stimulation is not a requisite, as it is possible to reach orgasm through psychological means. Getting to orgasm may be difficult without a suitable psychological state. During sleep, a sex dream can trigger an orgasm and the release of sexual fluids (nocturnal emission).

View the full Wikipedia page for Orgasm
↑ Return to Menu

Pelvis in the context of Hard flaccid syndrome

Hard flaccid syndrome (HFS), also known as hard flaccid (HF), is a rare acquired dysautonomic condition characterized by a flaccid penis that remains in a firm, semi-rigid state in the absence of sexual arousal. Patients often describe their flaccid penis as firm to the touch, rubbery, shrunken, and retracted, frequently accompanied by pain, discomfort, and various other symptoms. While the condition is not fully understood, current research indicates that HFS results from excessive sympathetic nervous system activity in the smooth muscle tissue of the penis, triggered by a pathological activation of a proposed pelvic/pudendal-hypogastric reflex. Among other causes, injuries to the erect penis, blunt trauma to the pelvis or perineum, and damage to the cauda equina are thought to induce this reflex. Although unproven, axon sprouting in sympathetic ganglia following a peripheral nerve injury is a possible explanation for HFS. The majority of patients are in their 20s and 30s, with symptoms severely affecting their quality of life. Treatment typically involves a combination of alpha blockers and PDE5 inhibitors, although there is limited evidence supporting their efficacy. Due to the lack of comprehensive understanding and awareness within the scientific and medical communities, there is currently no definitive treatment for HFS.

View the full Wikipedia page for Hard flaccid syndrome
↑ Return to Menu

Pelvis in the context of Caesarean section

Caesarean section, also known as C-section, cesarean, or caesarean delivery, is the surgical procedure by which one or more babies are delivered through an incision in the mother's abdomen. It is often performed because vaginal delivery would put the mother or child at risk (of paralysis or even death). Reasons for the operation include, but are not limited to, obstructed labor, twin pregnancy, high blood pressure in the mother, breech birth, shoulder presentation, and problems with the placenta or umbilical cord. A caesarean delivery may be performed based upon the shape of the mother's pelvis or history of a previous C-section. A trial of vaginal birth after C-section may be possible. The World Health Organization recommends that caesarean section be performed only when medically necessary.

A C-section typically takes between 45 minutes to an hour to complete. It may be done with a spinal block, where the woman is awake, or under general anesthesia. A urinary catheter is used to drain the bladder, and the skin of the abdomen is then cleaned with an antiseptic. An incision of about 15 cm (5.9 in) is then typically made through the mother's lower abdomen. The uterus is then opened with a second incision and the baby delivered. The incisions are then stitched closed. A woman can typically begin breastfeeding as soon as she is out of the operating room and awake. Often, several days are required in the hospital to recover sufficiently to return home.

View the full Wikipedia page for Caesarean section
↑ Return to Menu

Pelvis in the context of A. sediba

Australopithecus sediba is an extinct species of australopithecine recovered from Malapa Cave, Cradle of Humankind, South Africa. It is known from a partial juvenile skeleton, the holotype MH1, and a partial adult female skeleton, the paratype MH2. They date to about 1.98 million years ago in the Early Pleistocene, and coexisted with Paranthropus robustus and Homo ergaster / Homo erectus. Malapa Cave may have been a natural death trap, the base of a long vertical shaft which creatures could accidentally fall into. A. sediba was initially described as being a potential human ancestor, and perhaps the progenitor of Homo, but this is contested and it could also represent a late-surviving population or sister species of A. africanus which had earlier inhabited the area.

MH1 has a brain volume of about 350–440 cc, similar to other australopithecines. The face of MH1 is strikingly similar to Homo instead of other australopithecines, with a less pronounced brow ridge, cheek bones, and prognathism (the amount the face juts out), and there is evidence of a slight chin. However, such characteristics could be due to juvenility and lost with maturity. The teeth are quite small for an australopithecine. MH1 is estimated at 130 cm (4 ft 3 in) tall, which would equate to an adult height of 150–156 cm (4 ft 11 in – 5 ft 1 in). MH1 and MH2 were estimated to have been about the same weight at 30–36 kg (66–79 lb). Like other australopithecines, A. sediba is thought to have had a narrow and apelike upper chest, but a broad and humanlike lower chest. Like other australopithecines, the arm anatomy seems to suggest a degree of climbing and arboreal behaviour. The pelvis indicates A. sediba was capable of a humanlike stride, but the foot points to a peculiar gait not demonstrated in any other hominin involving hyperpronation of the ankle, and resultantly rotating the leg inwards while pushing off. This suite of adaptations may represent a compromise between habitual bipedalism and arboreality.

View the full Wikipedia page for A. sediba
↑ Return to Menu

Pelvis in the context of Solo Man

Solo Man (Homo erectus soloensis) is a subspecies of H. erectus that lived along the Solo River in Java, Indonesia, about 117,000 to 108,000 years ago in the Late Pleistocene. This population is the last known record of the species. It is known from 14 skullcaps, two tibiae, and a piece of the pelvis excavated near the village of Ngandong, and possibly three skulls from Sambungmacan and a skull from Ngawi depending on classification. The Ngandong site was first excavated from 1931 to 1933 under the direction of Willem Frederik Florus Oppenoorth, Carel ter Haar, and Gustav Heinrich Ralph von Koenigswald, but further study was set back by the Great Depression, World War II and the Indonesian War of Independence. In accordance with historical race concepts, Indonesian H. erectus subspecies were originally classified as the direct ancestors of Aboriginal Australians; however, Solo Man is now thought to have no living descendants as the remains far predate modern human immigration into the area, which began roughly 55,000 to 50,000 years ago.

The Solo Man skull is oval-shaped in top view, with heavy brows, inflated cheekbones, and a prominent bar of bone wrapping around the back. The brain volume was quite large, measuring from 1,013 to 1,251 cubic centimetres (61.8 to 76.3 cu in), which is within the range of variation for present-day modern humans. One potentially female specimen may have been 158 cm (5 ft 2 in) tall and weighed 51 kg (112 lb); males were probably much bigger than females. Solo Man was in many ways similar to the Java Man (H. e. erectus) that had earlier inhabited Java, but was far less archaic.

View the full Wikipedia page for Solo Man
↑ Return to Menu

Pelvis in the context of Brontosaurus

Brontosaurus (/ˌbrɒntəˈsɔːrəs/; meaning "thunder lizard" from the Greek words βροντή, brontē "thunder" and σαῦρος, sauros "lizard") is a genus of herbivorous sauropod dinosaur that lived in present-day United States during the Late Jurassic period. It was described by American paleontologist Othniel Charles Marsh in 1879, the type species being dubbed B. excelsus, based on a partial skeleton lacking a skull found in Como Bluff, Wyoming. In subsequent years, two more species of Brontosaurus were named: B. parvus in 1902 and B. yahnahpin in 1994. Brontosaurus lived about 156 to 146 million years ago (mya) during the Kimmeridgian and Tithonian ages in the Morrison Formation of what is now Utah and Wyoming. For decades, the animal was thought to have been a taxonomic synonym of its close relative Apatosaurus, but a 2015 study by Emmanuel Tschopp and colleagues found it to be distinct. It has seen widespread representation in popular culture, being the archetypal "long-necked" dinosaur in general media.

The anatomy of Brontosaurus is well known, with fossils demonstrating that it was large, long-necked, and quadrupedal with a long tail terminating in a whip-like structure. The cervical vertebrae are notably extremely robust and heavily built, in contrast to its lightly built relatives Diplodocus and Barosaurus. The forelimbs were short and stout whereas the hindlimbs were elongated and thick, supported respectively by a heavily built shoulder girdle and pelvis. Several size estimates have been made, with the largest species B. excelsus reaching up to 21–23 m (69–75 ft) from head to tail and weighing in at 15–20 t (17–22 short tons), whereas the smaller B. parvus only got up to 19 m (62 ft) long. Juvenile specimens of Brontosaurus are known, with younger individuals growing rapidly to adult size in as little as 15 years.

View the full Wikipedia page for Brontosaurus
↑ Return to Menu

Pelvis in the context of Axial skeleton

The axial skeleton is the core part of the endoskeleton made of the bones of the head and trunk of vertebrates. In the human skeleton, it consists of 80 bones and is composed of the skull (28 bones, including the cranium, mandible and the middle ear ossicles), the vertebral column (26 bones, including vertebrae, sacrum and coccyx), the rib cage (25 bones, including ribs and sternum), and the hyoid bone. The axial skeleton is joined to the appendicular skeleton (which support the limbs) via the shoulder girdles and the pelvis.

View the full Wikipedia page for Axial skeleton
↑ Return to Menu