Parallel evolution is the similar development of a trait in distinct species that are not closely related, but share a similar original trait in response to similar evolutionary pressure.
Parallel evolution is the similar development of a trait in distinct species that are not closely related, but share a similar original trait in response to similar evolutionary pressure.
Recurrent evolution also referred to as repeated or replicated evolution is the repeated evolution of a particular trait, character, or mutation. Most evolution is the result of drift, often interpreted as the random chance of some alleles being passed down to the next generation and others not. Recurrent evolution is said to occur when patterns emerge from this stochastic process when looking across multiple distinct populations. These patterns are of particular interest to evolutionary biologists, as they can demonstrate the underlying forces governing evolution.
Recurrent evolution is a broad term, but it is usually used to describe recurring regimes of selection within or across lineages. While most commonly used to describe recurring patterns of selection, it can also be used to describe recurring patterns of mutation; for example, transitions are more common than transversions. The concept encompasses both convergent evolution and parallel evolution; it can be used to describe the observation of similar repeating changes through directional selection as well as the observation of highly conserved phenotypes or genotypes across lineages through continuous purifying selection over large periods of evolutionary time.
Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.
The opposite of convergent evolution is divergent evolution, where related species evolve different traits. Convergent evolution is similar to parallel evolution, which occurs when two independent species evolve in the same direction and thus independently acquire similar characteristics; for instance, gliding frogs have evolved in parallel from multiple types of tree frog.
Phytosaurs (Φυτόσαυροι in Greek, meaning 'plant lizard') are an extinct group of large, mostly semiaquatic Late Triassic archosauriform or basal archosaurian reptiles. Phytosaurs belong to the order Phytosauria and are sometimes referred to as parasuchians. Phytosauria, Parasuchia, Parasuchidae, and Phytosauridae have often been considered equivalent groupings containing the same species. Some recent studies have offered a more nuanced approach, defining Parasuchidae and Phytosauridae as nested clades within Phytosauria as a whole. The clade Phytosauria was defined by Paul Sereno in 2005 as Rutiodon carolinensis and all taxa more closely related to it than to Aetosaurus ferratus, Rauisuchus tiradentes, Prestosuchus chiniquensis, Ornithosuchus woodwardi, or Crocodylus niloticus (the Nile crocodile). Phytosaurs were long-snouted and heavily armoured, bearing a remarkable resemblance to modern crocodilians in size, appearance, and lifestyle, as an example of convergence or parallel evolution.
The name phytosaur means 'plant lizard', as the first fossils of phytosaurs were mistakenly thought to belong to plant-eaters.
Palaeognathae (/ˌpæliˈɒɡnəθi/; from Ancient Greek παλαιός (palaiós) 'old' and γνάθος (gnáthos) 'jaw') is an infraclass of birds, called paleognaths or palaeognaths, within the class Aves of the clade Archosauria. It is one of the two infraclasses of birds, the other being Neognathae, both of which form Neornithes. Palaeognathae contains five extant orders consisting of four flightless lineages (plus two that are extinct), termed ratites, and one flying lineage, the Neotropic tinamous. There are 47 species of tinamous, five of kiwis (Apteryx), three of cassowaries (Casuarius), one of emus (Dromaius) (another became extinct in historic times), two of rheas (Rhea) and two of ostriches (Struthio). Recent research has indicated that paleognaths are monophyletic but the traditional taxonomic split between flightless and flighted forms is incorrect; tinamous are within the ratite radiation, meaning flightlessness arose independently multiple times via parallel evolution.
There are three extinct groups that are undisputed members of Palaeognathae: the Lithornithiformes, the Dinornithiformes (moas) and the Aepyornithiformes (elephant birds), the latter two of which became extinct in the last 1250 years. There are other extinct birds which have been allied with the Palaeognathae by at least one author, but their affinities are a matter of dispute.
Convergent evolution is the independent evolution of similar features in species of different lineages. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.
The opposite of convergent evolution is divergent evolution, where related species evolve different traits. Convergent evolution is similar to parallel evolution, which occurs when two independent species evolve in the same direction and thus independently acquire similar characteristics; for instance, gliding frogs have evolved in parallel from multiple types of tree frog.
The arthropod leg is a form of jointed appendage of arthropods, usually used for walking. Many of the terms used for arthropod leg segments (called podomeres) are of Latin origin, and may be confused with terms for bones: coxa (meaning hip, pl.: coxae), trochanter, femur (pl.: femora), tibia (pl.: tibiae), tarsus (pl.: tarsi), ischium (pl.: ischia), metatarsus, carpus, dactylus (meaning finger), patella (pl.: patellae).
Homologies of leg segments between groups are difficult to prove and are the source of much argument. Some authors posit up to eleven segments per leg for the most recent common ancestor of extant arthropods but modern arthropods have eight or fewer. It has been argued that the ancestral leg need not have been so complex, and that other events, such as successive loss of function of a Hox-gene, could result in parallel gains of leg segments.