Parabolic partial differential equation in the context of Hyperbolic partial differential equation


Parabolic partial differential equation in the context of Hyperbolic partial differential equation

Parabolic partial differential equation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Parabolic partial differential equation in the context of "Hyperbolic partial differential equation"


HINT:

👉 Parabolic partial differential equation in the context of Hyperbolic partial differential equation

In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this isThe equation has the property that, if u and its first time derivative are arbitrarily specified initial data on the line t = 0 (with sufficient smoothness properties), then there exists a solution for all time t.

The solutions of hyperbolic equations are "wave-like". If a disturbance is made in the initial data of a hyperbolic differential equation, then not every point of space feels the disturbance at once. Relative to a fixed time coordinate, disturbances have a finite propagation speed. They travel along the characteristics of the equation. This feature qualitatively distinguishes hyperbolic equations from elliptic partial differential equations and parabolic partial differential equations. A perturbation of the initial (or boundary) data of an elliptic or parabolic equation is felt at once by essentially all points in the domain.

↓ Explore More Topics
In this Dossier

Parabolic partial differential equation in the context of Heat diffusion

In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in many parts of both pure and applied mathematics.

View the full Wikipedia page for Heat diffusion
↑ Return to Menu

Parabolic partial differential equation in the context of Diffusion equation

The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's laws of diffusion). In mathematics, it is related to Markov processes, such as random walks, and applied in many other fields, such as materials science, information theory, and biophysics. The diffusion equation is a special case of the convection–diffusion equation when bulk velocity is zero. It is equivalent to the heat equation under some circumstances.

View the full Wikipedia page for Diffusion equation
↑ Return to Menu

Parabolic partial differential equation in the context of John Forbes Nash Jr.

John Forbes Nash Jr. (June 13, 1928 – May 23, 2015), known and published as John Nash, was an American mathematician who made fundamental contributions to game theory, real algebraic geometry, differential geometry, and partial differential equations. Nash and fellow game theorists John Harsanyi and Reinhard Selten were awarded the 1994 Nobel Prize in Economics. In 2015, Louis Nirenberg and he were awarded the Abel Prize for their contributions to the field of partial differential equations.

As a graduate student in the Princeton University Department of Mathematics, Nash introduced a number of concepts (including the Nash equilibrium and the Nash bargaining solution), which are now considered central to game theory and its applications in various sciences. In the 1950s, Nash discovered and proved the Nash embedding theorems by solving a system of nonlinear partial differential equations arising in Riemannian geometry. This work, also introducing a preliminary form of the Nash–Moser theorem, was later recognized by the American Mathematical Society with the Leroy P. Steele Prize for Seminal Contribution to Research. Ennio De Giorgi and Nash found, with separate methods, a body of results paving the way for a systematic understanding of elliptic and parabolic partial differential equations. Their De Giorgi–Nash theorem on the smoothness of solutions of such equations resolved Hilbert's nineteenth problem on regularity in the calculus of variations, which had been a well-known open problem for almost 60 years.

View the full Wikipedia page for John Forbes Nash Jr.
↑ Return to Menu

Parabolic partial differential equation in the context of Numerical methods for partial differential equations

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist.

View the full Wikipedia page for Numerical methods for partial differential equations
↑ Return to Menu

Parabolic partial differential equation in the context of Refractory period (physiology)

Refractoriness is the fundamental property of any object of autowave nature (especially excitable medium) not responding to stimuli, if the object stays in the specific refractory state. In common sense, refractory period is the characteristic recovery time, a period that is associated with the motion of the image point on the left branch of the isocline (for more details, see also Reaction–diffusion and Parabolic partial differential equation).

In physiology, a refractory period is a period of time during which an organ or cell is incapable of repeating a particular action, or (more precisely) the amount of time it takes for an excitable membrane to be ready for a second stimulus once it returns to its resting state following an excitation. It most commonly refers to electrically excitable muscle cells or neurons. Absolute refractory period corresponds to depolarization and repolarization, whereas relative refractory period corresponds to hyperpolarization.
Cite error: There are <ref group=B:> tags on this page, but the references will not show without a {{reflist|group=B:}} template (see the help page).

View the full Wikipedia page for Refractory period (physiology)
↑ Return to Menu