Oxidative phosphorylation in the context of "ATP synthase"

Play Trivia Questions online!

or

Skip to study material about Oxidative phosphorylation in the context of "ATP synthase"

Ad spacer

⭐ Core Definition: Oxidative phosphorylation

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than fermentation.

In aerobic respiration, the energy stored in the chemical bonds of glucose is released by the cell in glycolysis and subsequently the citric acid cycle, producing carbon dioxide and the energetic electron donors NADH and FADH₂. Oxidative phosphorylation uses these molecules and O2 to produce ATP, which is used throughout the cell whenever energy is needed. During oxidative phosphorylation, electrons are transferred from the electron donors to a series of electron acceptors in a series of redox reactions ending in oxygen, whose reaction releases half of the total energy.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Oxidative phosphorylation in the context of Anaerobe

An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for its growth. It may react negatively or even die in the presence of free oxygen. Anaerobic organisms do not use oxygen as a terminal electron acceptor in their respiration process to produce energy, but a less powerful oxidizing agent, such as nitrate, ferric ion, Mn(IV), sulfate or bicarbonate anions. In contrast, an aerobic organism (aerobe) is an organism that requires a sufficiently oxygenated environment to respire, produce its energy, and thrive. Because the anaerobic energy production was the first mechanism to be used by living microorganisms in their evolution and is much less efficient than the aerobic pathway, anaerobes are practically, de facto, always unicellular organisms (e.g. bacteria and archaea (prokaryotes), or protozoans (eukaryotes). However, a minuscule multicellular organism, with an exceptionally rare metabolism and surviving in a hypersaline brine pool in the darkness of the bottom of the Mediterranean Sea, has been recently discovered. Meanwhile, it remains a scientific curiosity, as the much higher energy requirements of most multicellular organisms cannot be met by anaerobic respiration. Most fungi (eukaryotes) are obligate aerobes, requiring oxygen to survive and grow; however, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen would disrupt their metabolism or kill them. The deep seafloor and its underlying unconsolidated sediments ranks among the largest potential habitats for anaerobic microorganisms on Earth. Moreover, chemoautotroph microbes also thrive around hydrothermal vents, discharging hot water on the ocean seabed near mid-ocean ridges, where anaerobic conditions prevail. These microbes produce energy in the absence of sunlight or oxygen through a process called anaerobic respiration, whereby inorganic compounds and ions such as protons (H), elemental sulfur and its derivatives (SO2−4, S2O2−3), or ferric ions, are reduced to drive oxidative phosphorylation.

↑ Return to Menu

Oxidative phosphorylation in the context of Metabolic pathway

In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell.

Different metabolic pathways function in the position within a eukaryotic cell and the significance of the pathway in the given compartment of the cell. For instance, the electron transport chain and oxidative phosphorylation all take place in the mitochondrial membrane. In contrast, glycolysis, pentose phosphate pathway, and fatty acid biosynthesis all occur in the cytosol of a cell.

↑ Return to Menu

Oxidative phosphorylation in the context of Mitochondrial DNA

Mitochondrial DNA (mDNA or mtDNA) is the DNA located in the mitochondria organelles in a eukaryotic cell that converts chemical energy from food into adenosine triphosphate (ATP). Mitochondrial DNA is a small portion of the DNA contained in a eukaryotic cell; most of the DNA is in the cell nucleus, and, in plants and algae, the DNA also is found in plastids, such as chloroplasts. Mitochondrial DNA is responsible for coding of 13 essential subunits of the complex oxidative phosphorylation (OXPHOS) system which has a role in cellular energy conversion.

Human mitochondrial DNA was the first significant part of the human genome to be sequenced. This sequencing revealed that human mtDNA has 16,569 base pairs and encodes 13 proteins. As in other vertebrates, the human mitochondrial genetic code differs slightly from nuclear DNA.

↑ Return to Menu

Oxidative phosphorylation in the context of Adenosine diphosphate

Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon.

ADP can be interconverted to adenosine triphosphate (ATP) and adenosine monophosphate (AMP). ATP contains one more phosphate group than ADP, while AMP contains one fewer phosphate group. Energy transfer used by all living things is a result of dephosphorylation of ATP by enzymes known as ATPases. The cleavage of a phosphate group from ATP results in the coupling of energy to metabolic reactions and a by-product of ADP. ATP is continually reformed from lower-energy species ADP and AMP. The biosynthesis of ATP is achieved throughout processes such as substrate-level phosphorylation, oxidative phosphorylation, and photophosphorylation, all of which facilitate the addition of a phosphate group to ADP.

↑ Return to Menu

Oxidative phosphorylation in the context of Treponema pallidum

Treponema pallidum, formerly known as Spirochaeta pallida, is a microaerophilic, gram-negative, spirochaete bacterium with subspecies that cause the diseases syphilis, bejel (also known as endemic syphilis), and yaws. It is known to be transmitted only among humans and baboons. T. pallidum can enter the host through mucosal membranes or open lesions in the skin and is primarily spread through sexual contact. It is a helically coiled microorganism usually 6–15 μm long and 0.1–0.2 μm wide. T. pallidum's lack of both a tricarboxylic acid cycle and processes for oxidative phosphorylation results in minimal metabolic activity. As a chemoorganoheterotroph, Treponema pallidum is an obligate parasite that acquires its glucose carbon source from its host. Glucose can be used not only as a primary carbon source but also in glycolytic mechanisms to generate ATP needed to power the bacterium given its minimal genome. The treponemes have cytoplasmic and outer membranes. Using light microscopy, treponemes are visible only by using dark-field illumination. T. pallidum consists of three subspecies, T. p. pallidum, T. p. endemicum, and T. p. pertenue, each of which has a distinct related disorder. The ability of T. pallidum to avoid host immune defenses has allowed for stealth pathogenicity. The unique outer membrane structure and minimal expression of surface proteins of T. pallidum has made vaccine development difficult. Treponema pallidum can be treated with high efficacy by antibiotics that inhibit bacterial cell wall synthesis such as the beta-lactam antimicrobial penicillin-G.

↑ Return to Menu