Phosphate in the context of "Adenosine diphosphate"

Play Trivia Questions online!

or

Skip to study material about Phosphate in the context of "Adenosine diphosphate"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Phosphate in the context of Banaba

Banaba (/bəˈnɑːbə/; formerly Ocean Island) is an island of Kiribati in the Pacific Ocean. A solitary raised coral island west of the Gilbert Island Chain, it is the westernmost point of Kiribati, lying 185 miles (298 km) east of Nauru, which is also its nearest neighbour. It has an area of six square kilometres (2.3 sq mi), and the highest point on the island is also the highest point in Kiribati, at 81 metres (266 ft) in height. Along with Nauru and Makatea (French Polynesia), it is one of the important elevated phosphate-rich islands of the Pacific.

↑ Return to Menu

Phosphate in the context of Nucleotide

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymersdeoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

Nucleotides are composed of three subunit molecules: a nucleobase, a five-carbon sugar (ribose or deoxyribose), and a phosphate group consisting of one to three phosphates. The four nucleobases in DNA are guanine, adenine, cytosine, and thymine; in RNA, uracil is used in place of thymine.

↑ Return to Menu

Phosphate in the context of ATP synthase

ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is:

  • ADP + Pi + 2Hout ⇌ ATP + H2O + 2Hin

ATP synthase lies across a cellular membrane and forms an aperture that protons can cross from areas of high concentration to areas of low concentration, imparting energy for the synthesis of ATP. This electrochemical gradient is generated by the electron transport chain and allows cells to store energy in ATP for later use. In prokaryotic cells ATP synthase lies across the plasma membrane, while in eukaryotic cells it lies across the inner mitochondrial membrane. Organisms capable of photosynthesis also have ATP synthase across the thylakoid membrane, which in plants is located in the chloroplast and in cyanobacteria is located in the cytoplasm.

↑ Return to Menu

Phosphate in the context of Metabolic waste

Metabolic wastes or excrements are substances left over from metabolic processes (such as cellular respiration) which cannot be used by the organism (they are surplus or toxic), and must therefore be excreted. This includes nitrogen compounds, water, CO2, phosphates, sulphates, etc. Animals treat these compounds as excretes. Plants have metabolic pathways which transforms some of them (primarily the oxygen compounds) into useful substances.

All the metabolic wastes are excreted in a form of water solutes through the excretory organs (nephridia, Malpighian tubules, kidneys), with the exception of CO2, which is excreted together with the water vapor throughout the lungs. The elimination of these compounds enables the chemical homeostasis of the organism.

↑ Return to Menu

Phosphate in the context of Phosphate mineral

Phosphate minerals are minerals that contain the tetrahedrally coordinated phosphate (PO3−4) anion, sometimes with arsenate (AsO3−4) and vanadate (VO3−4) substitutions, along with chloride (Cl), fluoride (F), and hydroxide (OH) anions, that also fit into the crystal structure.

The phosphate class of minerals is a large and diverse group, however, only a few species are relatively common.

↑ Return to Menu

Phosphate in the context of Harmful algal bloom

A harmful algal bloom (HAB), or excessive algae growth, sometimes called a red tide in marine environments, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, water deoxygenation, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive.

It is sometimes unclear what causes specific HABs as their occurrence in some locations appears to be entirely natural, while in others they appear to be a result of human activities. In certain locations there are links to particular drivers like nutrients, but HABs have also been occurring since before humans started to affect the environment. HABs are induced by eutrophication, which is an overabundance of nutrients in the water. The two most common nutrients are fixed nitrogen (nitrates, ammonia, and urea) and phosphate. The excess nutrients are emitted by agriculture, industrial pollution, excessive fertilizer use in urban/suburban areas, and associated urban runoff. Higher water temperature and low circulation also contribute.

↑ Return to Menu

Phosphate in the context of Suspension feeding

Filter feeders are aquatic animals that acquire nutrients by feeding on organic matter, food particles or smaller organisms (bacteria, microalgae and zooplanktons) suspended in water, typically by having the water pass over or through a specialized filtering organ that sieves out and/or traps solids. Filter feeders can play an important role in condensing biomass and removing excess nutrients (such as nitrogen and phosphate) from the local waterbody, and are therefore considered water-cleaning ecosystem engineers. They are also important in bioaccumulation and, as a result, as indicator organisms.

Filter feeders can be sessile, planktonic, nektonic or even neustonic (in the case of the buoy barnacle) depending on the species and the niches they have evolved to occupy. Extant species that rely on such method of feeding encompass numerous phyla, including poriferans (sponges), cnidarians (jellyfish, sea pens and corals), arthropods (krill, mysids and barnacles), molluscs (bivalves, such as clams, scallops and oysters), echinoderms (sea lilies) and chordates (lancelets, sea squirts and salps, as well as many marine vertebrates such as most species of forage fish, American paddlefish, silver and bighead carps, baleen whales, manta ray and three species of sharks—the whale shark, basking shark and megamouth shark). Some water birds such as flamingos and certain duck species, though predominantly terrestrial, are also filter feeders when foraging.

↑ Return to Menu