Osteichthyes in the context of Chondrichthyian


Osteichthyes in the context of Chondrichthyian

Osteichthyes Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Osteichthyes in the context of "Chondrichthyian"


⭐ Core Definition: Osteichthyes

Osteichthyes (/ˌɒstˈɪkθz/ ost-ee-IK-theez; from Ancient Greek ὀστέον (ostéon) 'bone' and ἰχθύς (ikhthús) 'fish'), also known as osteichthyans or commonly referred to as the bony fish, is a diverse clade of vertebrate animals that have endoskeletons primarily composed of bone tissue. They can be contrasted with the Chondrichthyes (cartilaginous fish) and the extinct placoderms and acanthodians, which have endoskeletons primarily composed of cartilage. The vast majority of extant fish are members of Osteichthyes, being an extremely diverse and abundant group consisting of 45 orders, over 435 families and 28,000 species.

The group is divided into two main clades, the ray-finned fish (Actinopterygii, which makes up the vast majority of extant fish) and the lobe-finned fish (Sarcopterygii, which gave rise to all land vertebrates, i.e. tetrapods). The oldest known fossils of bony fish are about 425 million years old from the late Silurian, which are also transitional fossils showing a tooth pattern that is in between the tooth rows of sharks and true bony fishes. Despite the name, these early basal bony fish had not yet evolved ossification and their skeletons were still mostly cartilaginous, and the main distinguishing feature that set them apart from other fish clades were the development of foregut pouches that eventually evolved into the swim bladders and lungs, respectively.

↓ Menu
HINT:

In this Dossier

Osteichthyes in the context of Vertebrate

Vertebrates (/ˈvɜːrtəbrɪt, -ˌbrt/), also called craniates, are animals with a vertebral column and a cranium. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain.

The vertebrates make up the subphylum Vertebrata (/ˌvɜːrtəˈbrtə/ VUR-tə-BRAY-tə) with some 65,000 species, by far the largest ranked grouping in the phylum Chordata. The vertebrates include mammals, birds, amphibians, and various classes of fish and reptiles. The fish include the jawless Agnatha, and the jawed Gnathostomata. The jawed fish include both the cartilaginous fish and the bony fish. Bony fish include the lobe-finned fish, which gave rise to the tetrapods, the animals with four limbs. Despite their success, vertebrates still only make up less than five percent of all described animal species.

View the full Wikipedia page for Vertebrate
↑ Return to Menu

Osteichthyes in the context of Evolution of fish

Fish began evolving about 530 million years ago during the Cambrian explosion. It was during this time that the early chordates developed the skull and the vertebral column, leading to the first craniates and vertebrates. The first fish lineages belong to the Agnatha, or jawless fish. Early examples include Haikouichthys. During the late Cambrian, eel-like jawless fish called the conodonts, and small mostly armoured fish known as ostracoderms, first appeared. Most jawless fish are now extinct; but the extant lampreys may approximate ancient pre-jawed fish. Lampreys belong to the Cyclostomata, which includes the extant hagfish, and this group may have split early on from other agnathans.

The earliest jawed vertebrates probably developed during the late Ordovician period. They are first represented in the fossil record from the Silurian by two groups of fish: the armoured fish known as placoderms, which evolved from the ostracoderms; and the Acanthodii (or spiny sharks). The jawed fish that are still extant in modern days also appeared during the late Silurian: the Chondrichthyes (or cartilaginous fish) and the Osteichthyes (or bony fish). The bony fish evolved into two separate groups: the Actinopterygii (or ray-finned fish) and Sarcopterygii (which includes the lobe-finned fish).

View the full Wikipedia page for Evolution of fish
↑ Return to Menu

Osteichthyes in the context of Tiktaalik

Tiktaalik (/tɪkˈtɑːlɪk/; Inuktitut: ᑎᒃᑖᓕᒃ [tiktaːlik]) is a monospecific genus of extinct sarcopterygian (lobe-finned fish) from the late Devonian Period, about 375 Mya (million years ago), having many features akin to those of tetrapods (four-legged animals). Tiktaalik is estimated to have had a total length of 1.25–2.75 metres (4.1–9.0 ft) on the basis of various specimens.

Unearthed in Arctic Canada, Tiktaalik is a non-tetrapod member of Osteichthyes (bony fish), complete with scales and gills—but it has a triangular, flattened head and unusual, cleaver-shaped fins. Its fins have thin ray bones for paddling like most fish, but they also have sturdy interior bones that would have allowed Tiktaalik to prop itself up in shallow water and use its limbs for support as most four-legged animals do. Those fins and other mixed characteristics mark Tiktaalik as a crucial transition fossil, a link in evolution from swimming fish to four-legged vertebrates. This and similar animals might be the common ancestors of all vertebrate terrestrial fauna: amphibians, reptiles, birds and mammals.

View the full Wikipedia page for Tiktaalik
↑ Return to Menu

Osteichthyes in the context of Cartilaginous fish

Chondrichthyes (/kɒnˈdrɪkθiz/; from Ancient Greek χόνδρος (khóndros) 'cartilage' and ἰχθύς (ikhthús) 'fish') is a class of jawed fish that contains the cartilaginous fish or chondrichthyans, which all have skeletons primarily composed of cartilage. They can be contrasted with the Osteichthyes or bony fish, which have skeletons primarily composed of bone tissue. Chondrichthyes are aquatic vertebrates with paired fins, paired nares, placoid scales, conus arteriosus in the heart, and a lack of opercula and swim bladders. Within the infraphylum Gnathostomata, cartilaginous fishes are distinct from all other jawed vertebrates.

The class is divided into two subclasses: Elasmobranchii (sharks, rays, skates and sawfish) and Holocephali (chimaeras, sometimes called ghost sharks, which are sometimes separated into their own class). Extant chondrichthyans range in size from the 10 cm (3.9 in) finless sleeper ray to the over 10 m (33 ft) whale shark.

View the full Wikipedia page for Cartilaginous fish
↑ Return to Menu

Osteichthyes in the context of Acanthodian

Acanthodii or acanthodians is an extinct class of gnathostomes (jawed fishes). They are currently considered to represent a paraphyletic grade of various fish lineages basal to extant Chondrichthyes, which includes living sharks, rays, and chimaeras. Acanthodians possess a mosaic of features shared with both osteichthyans (bony fish) and chondrichthyans (cartilaginous fish). In general body shape, they were similar to modern sharks, but their epidermis was covered with tiny rhomboid platelets like the scales of holosteians (gars, bowfins).

The popular name "spiny sharks" is because they were superficially shark-shaped, with a streamlined body, paired fins, a strongly upturned tail, and stout, largely immovable bony spines supporting all the fins except the tail—hence, "spiny sharks". However, acanthodians are not true sharks; their close relation to modern cartilaginous fish can lead them to be considered "stem-sharks". Acanthodians had a cartilaginous skeleton, but their fins had a wide, bony base and were reinforced on their anterior margin with a dentine spine. As a result, fossilized spines and scales are often all that remains of these fishes in ancient sedimentary rocks. The earliest acanthodians were marine, but during the Devonian, freshwater species became predominant.

View the full Wikipedia page for Acanthodian
↑ Return to Menu

Osteichthyes in the context of Ichthyology

Ichthyology, from Ancient Greek ἰχθύς (ikhthús), meaning "fish", and λόγος (lógos), meaning "study", is the branch of zoology devoted to the study of fish, including bony fish (Osteichthyes), cartilaginous fish (Chondrichthyes), and jawless fish (Agnatha). According to FishBase, 35,800 species of fish had been described as of March 2025.

View the full Wikipedia page for Ichthyology
↑ Return to Menu

Osteichthyes in the context of Seahorse

A seahorse (also written sea-horse and sea horse) is any of 46 species of small marine bony fish in the genus Hippocampus. The genus name comes from the Ancient Greek hippókampos (ἱππόκαμπος), itself from híppos (ἵππος) meaning "horse" and kámpos (κάμπος) meaning "sea monster" or "sea animal". Having a head and neck suggestive of a horse, seahorses also feature segmented bony armour, an upright posture and a curled prehensile tail. Along with the pipefishes and seadragons (Phycodurus and Phyllopteryx) they form the family Syngnathidae.

View the full Wikipedia page for Seahorse
↑ Return to Menu

Osteichthyes in the context of Ray-finned fish

Actinopterygii (/ˌæktɪnɒptəˈrɪi/ ; from Ancient Greek ἀκτίς (aktís) 'ray, beam' and πτέρυξ (ptérux) 'wing, fins'), members of which are known as ray-finned fish or actinopterygians, is a class of bony fish that constitute nearly 99% of the over 30,000 living species of fish. The vast majority of extant actinopterygian species are teleosts, and by species count they dominate the subphylum Vertebrata, comprising over 50% of all living vertebrates. They are the most abundant nektonic aquatic animals and are ubiquitous throughout freshwater, brackish and marine environments from the deep sea to subterranean waters to the highest mountain streams. Extant species can range in size from Paedocypris, at 8 mm (0.3 in), to the giant sunfish, at 2,700 kg (6,000 lb), and the giant oarfish, at 8 m (26 ft) (or possibly 11 m (36 ft)). The largest ever known ray-finned fish, the extinct Leedsichthys from the Jurassic, is estimated to have grown to 16.5 m (54 ft).

Ray-finned fish are so called because of their lightly built fins made of webbings of skin supported by radially extended thin bony spines called lepidotrichia, as opposed to the bulkier, fleshy fins of the sister clade Sarcopterygii (lobe-finned fish). Resembling folding fans, the actinopterygian fins can easily change shape, orientation and wetted area, providing superior thrust-to-weight ratios per movement compared to sarcopterygian and chondrichthyian fins. The fin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the articulation between these fins and the internal skeleton (e.g., pelvic and pectoral girdles).

View the full Wikipedia page for Ray-finned fish
↑ Return to Menu

Osteichthyes in the context of List of largest fish

Fish vary greatly in size. The extant whale shark and basking shark exceed all other fish by a considerable margin in weight and length. The extinct Otodus megalodon exceeds all other fish, extant and extinct (excluding tetrapods), in size. Fish in the common usage are a paraphyletic group that describes aquatic vertebrates while excluding the tetrapods, four limbed vertebrates nested within the lobe-finned fish, which include all land vertebrates and their nearest extinct relatives.

This list therefore excludes the various marine reptiles and mammals, such as the extinct ichthyosaur, plesiosaur and mosasaur reptiles (none of which are dinosaurs) and the extant sirenia and cetacea mammals (such as the marine tetrapod blue whale, generally considered to be the largest animal known to have ever lived).

View the full Wikipedia page for List of largest fish
↑ Return to Menu

Osteichthyes in the context of Dermal denticle

A fish scale is a small rigid plate that grows out of the skin of a fish. The skin of most jawed fishes is covered with these protective scales, which can also provide effective camouflage through the use of reflection and colouration, as well as possible hydrodynamic advantages. The term scale derives from the Old French escale, meaning a shell pod or husk.

Scales vary enormously in size, shape, structure, and extent, ranging from strong and rigid armour plates in fishes such as shrimpfishes and boxfishes, to microscopic or absent in fishes such as eels and anglerfishes. The morphology of a scale can be used to identify the species of fish it came from. Scales originated within the jawless ostracoderms, ancestors to all jawed fishes today.Most bony fishes are covered with the cycloid scales of salmon and carp, or the ctenoid scales of perch, or the ganoid scales of sturgeons and gars. Cartilaginous fishes (sharks and rays) are covered with placoid scales. Some species are covered instead by scutes, and others have no outer covering on part or all of the skin.

View the full Wikipedia page for Dermal denticle
↑ Return to Menu

Osteichthyes in the context of Electroreception

Electroreception and electrogenesis are the closely related biological abilities to perceive electrical stimuli and to generate electric fields. Both are used to locate prey; stronger electric discharges are used in a few groups of fishes, such as the electric eel, to stun prey. The capabilities are found almost exclusively in aquatic or amphibious animals, since water is a much better conductor of electricity than air. In passive electrolocation, objects such as prey are detected by sensing the electric fields they create. In active electrolocation, fish generate a weak electric field and sense the different distortions of that field created by objects that conduct or resist electricity. Active electrolocation is practised by two groups of weakly electric fish, the order Gymnotiformes (knifefishes) and family Mormyridae (elephantfishes), and by the monotypic genus Gymnarchus (African knifefish). An electric fish generates an electric field using an electric organ, modified from muscles in its tail. The field is called weak if it is only enough to detect prey, and strong if it is powerful enough to stun or kill. The field may be in brief pulses, as in the elephantfishes, or a continuous wave, as in the knifefishes. Some strongly electric fish, such as the electric eel, locate prey by generating a weak electric field, and then discharge their electric organs strongly to stun the prey; other strongly electric fish, such as the electric ray, electrolocate passively. The stargazers are unique in being strongly electric but not using electrolocation.

The electroreceptive ampullae of Lorenzini evolved early in the history of the vertebrates; they are found in both cartilaginous fishes such as sharks, and in bony fishes such as coelacanths and sturgeons, and must therefore be ancient. Most bony fishes have secondarily lost their ampullae of Lorenzini, but other non-homologous electroreceptors have repeatedly evolved, including in two groups of mammals, the monotremes (platypus and echidnas) and the cetaceans (Guiana dolphin).

View the full Wikipedia page for Electroreception
↑ Return to Menu