Lepidotrichia in the context of "Ray-finned fish"

Play Trivia Questions online!

or

Skip to study material about Lepidotrichia in the context of "Ray-finned fish"

Ad spacer

⭐ Core Definition: Lepidotrichia

In a zoological context, spines are hard, needle-like anatomical structures found in both vertebrate and invertebrate species. The spines of most spiny mammals are modified hairs, with a spongy center covered in a thick, hard layer of keratin and a sharp, sometimes barbed tip.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Lepidotrichia in the context of Ray-finned fish

Actinopterygii (/ˌæktɪnɒptəˈrɪi/ ; from Ancient Greek ἀκτίς (aktís) 'ray, beam' and πτέρυξ (ptérux) 'wing, fins'), members of which are known as ray-finned fish or actinopterygians, is a class of bony fish that constitute nearly 99% of the over 30,000 living species of fish. The vast majority of extant actinopterygian species are teleosts, and by species count they dominate the subphylum Vertebrata, comprising over 50% of all living vertebrates. They are the most abundant nektonic aquatic animals and are ubiquitous throughout freshwater, brackish and marine environments from the deep sea to subterranean waters to the highest mountain streams. Extant species can range in size from Paedocypris, at 8 mm (0.3 in), to the giant sunfish, at 2,700 kg (6,000 lb), and the giant oarfish, at 8 m (26 ft) (or possibly 11 m (36 ft)). The largest ever known ray-finned fish, the extinct Leedsichthys from the Jurassic, is estimated to have grown to 16.5 m (54 ft).

Ray-finned fish are so called because of their lightly built fins made of webbings of skin supported by radially extended thin bony spines called lepidotrichia, as opposed to the bulkier, fleshy fins of the sister clade Sarcopterygii (lobe-finned fish). Resembling folding fans, the actinopterygian fins can easily change shape, orientation and wetted area, providing superior thrust-to-weight ratios per movement compared to sarcopterygian and chondrichthyian fins. The fin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the articulation between these fins and the internal skeleton (e.g., pelvic and pectoral girdles).

↓ Explore More Topics
In this Dossier

Lepidotrichia in the context of Sarcopterygian

Sarcopterygii (/ˌsɑːrkɒptəˈrɪi./; from Ancient Greek σάρξ (sárx) 'flesh' and πτέρυξ (ptérux) 'wing, fin')—sometimes considered synonymous with Crossopterygii (κροσσός, krossós, 'fringe')—is a clade (traditionally a class or subclass) of vertebrate animals which includes a group of bony fish commonly referred to as lobe-finned fish. These vertebrates are characterised by prominent muscular limb buds (lobes) within their fins, which are supported by articulated appendicular skeletons. This is in contrast to the other clade of bony fish, the Actinopterygii, which have only skin-covered bony spines supporting the fins.

The tetrapods, a mostly terrestrial clade of vertebrates, are now recognized as having evolved from sarcopterygian ancestors and are most closely related to lungfishes. Their paired pectoral and pelvic fins evolved into limbs, and their foregut diverticulum eventually evolved into air-breathing lungs. Cladistically, this would make the tetrapods a subgroup within Sarcopterygii and thus sarcopterygians themselves. As a result, the phrase "lobe-finned fish" normally refers to not the entire clade but only aquatic members that are not tetrapods, i.e. a paraphyletic group.

↑ Return to Menu

Lepidotrichia in the context of Dermal bone

A dermal bone or investing bone or membrane bone is a bony structure derived from intramembranous ossification forming components of the vertebrate skeleton, including much of the skull, jaws, gill covers, shoulder girdle, fin rays (lepidotrichia), and the shells of turtles and armadillos. In contrast to endochondral bone, dermal bone does not have a cartilage precursor, and it is often ornamented. Dermal bone is formed within the dermis and grows by accretion only – the outer portion of the bone is deposited by osteoblasts.

The function of some dermal bone is conserved throughout vertebrates, although there is variation in shape and in the number of bones in the skull roof and postcranial structures. In bony fish, dermal bone is found in the fin rays and scales. A special example of dermal bone is the clavicle. Some of the dermal bone functions regard biomechanical aspects such as protection against predators. The dermal bones are also argued to be involved in ecophysiological implications such as the heat transfers between the body and the surrounding environment when basking (seen in crocodilians) as well as in bone respiratory acidosis buffering during prolonged apnea (seen in both crocodilians and turtles). These ecophysiological functions rely on the set-up of a blood vessel network within and straight above the dermal bones.

↑ Return to Menu