Optical path length in the context of Differential interference contrast microscopy


Optical path length in the context of Differential interference contrast microscopy

Optical path length Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Optical path length in the context of "Differential interference contrast microscopy"


⭐ Core Definition: Optical path length

In optics, optical path length (OPL, denoted Λ in equations), also known as optical length or optical distance, is the length that light needs to travel through a vacuum to create the same phase difference as it would have when traveling through a given medium. For a homogeneous medium through which the light ray propagates, it is calculated as taking the product of the geometric length of the optical path followed by light and the refractive index of the medium. For inhomogeneous optical media, the product above is generalized as a path integral as part of the ray tracing procedure. A difference in OPL between two paths is often called the optical path difference (OPD). OPL and OPD are important because they determine the phase of the light and govern interference and diffraction of light as it propagates.

In a medium of constant refractive index, n, the OPL for a path of geometrical length s is just

↓ Menu
HINT:

👉 Optical path length in the context of Differential interference contrast microscopy

Differential interference contrast (DIC) microscopy, also called Nomarski interference contrast (NIC) or Nomarski microscopy, is an optical microscopy technique used to enhance the contrast in unstained, transparent samples. DIC works on the principle of interferometry to gain information about the optical path length of the sample, to see otherwise invisible features. A relatively complex optical system produces an image with the object appearing black to white on a grey background. This image is similar to that obtained by phase-contrast microscopy, but without the bright diffraction halo. The technique was invented by Francis Hughes Smith. The "Smith DIK" was produced by Ernst Leitz Wetzlar in Germany and was difficult to manufacture. DIC was then developed further by Polish physicist Georges Nomarski in 1952.

DIC works by separating a polarized light source into two orthogonally polarized mutually coherent parts which are spatially displaced (sheared) at the sample plane, and recombined before observation. The interference of the two parts at recombination is sensitive to their optical path difference (i.e. the product of refractive index and geometric path length). Adding an adjustable offset phase determining the interference at zero optical path difference in the sample, the contrast is proportional to the path length gradient along the shear direction, giving the appearance of a three-dimensional physical relief corresponding to the variation of optical density of the sample, emphasising lines and edges though not providing a topographically accurate image.

↓ Explore More Topics
In this Dossier

Optical path length in the context of Interferometry

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy (and its applications to chemistry), quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Interferometers are devices that extract information from interference. They are widely used in science and industry for the measurement of microscopic displacements, refractive index changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different optical paths, which are then combined again to produce interference; two incoherent sources can also be made to interfere under some circumstances. The resulting interference fringes give information about the difference in optical path lengths. In analytical science, interferometers are used to measure lengths and the shape of optical components with nanometer precision; they are the highest-precision length measuring instruments in existence. In Fourier transform spectroscopy they are used to analyze light containing features of absorption or emission associated with a substance or mixture. An astronomical interferometer consists of two or more separate telescopes that combine their signals, offering a resolution equivalent to that of a telescope of diameter equal to the largest separation between its individual elements.

View the full Wikipedia page for Interferometry
↑ Return to Menu

Optical path length in the context of Chappuis absorption

Chappuis absorption (French: [ʃapɥi]) refers to the absorption of electromagnetic radiation by ozone, which is especially noticeable in the ozone layer, which absorbs a small part of sunlight in the visible portion of the electromagnetic spectrum. The Chappuis absorption bands occur at wavelengths between 400 and 650 nm. Within this range are two absorption maxima of similar height at 575 and 603 nm.

Compared to the absorption of ultraviolet light by the ozone layer, known as the Hartley and Huggins absorptions, Chappuis absorption is distinctly weaker. Along with Rayleigh scattering, it contributes to the blue color of the sky, and is noticeable when the light has to travel a long path through the Earth's atmosphere. For this reason, Chappuis absorption only has a significant effect on the color of the sky at dawn and dusk, during the so-called blue hour. It is named after the French chemist James Chappuis (1854–1934), who discovered this effect.

View the full Wikipedia page for Chappuis absorption
↑ Return to Menu

Optical path length in the context of Optical path

Optical path (OP) is the trajectory that a light ray follows as it propagates through an optical medium.The geometrical optical-path length or simply geometrical path length (GPD) is the length of a segment in a given OP, i.e., the Euclidean distance integrated along a ray between any two points.The mechanical length of an optical device can be reduced to less than the GPD by using folded optics. The optical path length in a homogeneous medium is the GPD multiplied by the refractive index of the medium.

View the full Wikipedia page for Optical path
↑ Return to Menu

Optical path length in the context of Optical depth

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material.Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

In chemistry, a closely related quantity called "absorbance" or "decadic absorbance" is used instead of optical depth: the common logarithm of the ratio of incident to transmitted radiant power through a material. It is the optical depth divided by loge(10), because of the different logarithm bases used.

View the full Wikipedia page for Optical depth
↑ Return to Menu

Optical path length in the context of Schlieren

Schlieren (/ˈʃlɪərən/ SHLEER-ən; German: [ˈʃliːʁn̩] , German for 'streaks') are optical inhomogeneities in transparent media that are not necessarily visible to the human eye. Schlieren physics developed out of the need to produce high-quality lenses devoid of such inhomogeneities. These inhomogeneities are localized differences in optical path length that cause deviations of light rays, especially by refraction. This light deviation can produce localized brightening, darkening, or even color changes in an image, depending on the directions the rays deviate.

View the full Wikipedia page for Schlieren
↑ Return to Menu