Operator (physics) in the context of Symmetry in physics


Operator (physics) in the context of Symmetry in physics

⭐ Core Definition: Operator (physics)

An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context). Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory. They play a central role in describing observables (measurable quantities like energy, momentum, etc.).

↓ Menu
HINT:

In this Dossier

Operator (physics) in the context of Relativistic quantum mechanics

In physics, relativistic quantum mechanics (RQM) is any Poincaré-covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high-energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.

Key features common to all RQMs include: the prediction of antimatter, spin magnetic moments of elementary spin-1/2 fermions, fine structure, and quantum dynamics of charged particles in electromagnetic fields. The key result is the Dirac equation, from which these predictions emerge automatically. By contrast, in non-relativistic quantum mechanics, terms have to be introduced artificially into the Hamiltonian operator to achieve agreement with experimental observations.

View the full Wikipedia page for Relativistic quantum mechanics
↑ Return to Menu

Operator (physics) in the context of Operator (mathematics)

In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly (for example in the case of an integral operator), and may be extended so as to act on related objects (an operator that acts on functions may act also on differential equations whose solutions are functions that satisfy the equation). (see Operator (physics) for other examples)

The most basic operators are linear maps, which act on vector spaces. Linear operators refer to linear maps whose domain and range are the same space, for example from to .Such operators often preserve properties, such as continuity. For example, differentiation and indefinite integration are linear operators; operators that are built from them are called differential operators, integral operators or integro-differential operators.

View the full Wikipedia page for Operator (mathematics)
↑ Return to Menu

Operator (physics) in the context of Mathematical formulation of quantum mechanics

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces (L space mainly), and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

These formulations of quantum mechanics continue to be used today. At the heart of the description are ideas of quantum state and quantum observables, which are radically different from those used in previous models of physical reality. While the mathematics permits calculation of many quantities that can be measured experimentally, there is a definite theoretical limit to values that can be simultaneously measured. This limitation was first elucidated by Heisenberg through a thought experiment, and is represented mathematically in the new formalism by the non-commutativity of operators representing quantum observables.

View the full Wikipedia page for Mathematical formulation of quantum mechanics
↑ Return to Menu

Operator (physics) in the context of Hamiltonian operator

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

The Hamiltonian is named after William Rowan Hamilton, who developed a revolutionary reformulation of Newtonian mechanics, known as Hamiltonian mechanics, which was historically important to the development of quantum physics. Similar to vector notation, it is typically denoted by , where the hat indicates that it is an operator. It can also be written as or .

View the full Wikipedia page for Hamiltonian operator
↑ Return to Menu

Operator (physics) in the context of Angular momentum operator

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the distinguishable physical states of a system's angular momentum, and the corresponding eigenvalues the observable experimental values. When applied to a mathematical representation of the state of a system, yields the same state multiplied by its angular momentum value if the state is an eigenstate (as per the eigenstates/eigenvalues equation). In both classical and quantum mechanical systems, angular momentum (together with linear momentum and energy) is one of the three fundamental properties of motion.

There are several angular momentum operators: total angular momentum (usually denoted J), orbital angular momentum (usually denoted L), and spin angular momentum (spin for short, usually denoted S). The term angular momentum operator can (confusingly) refer to either the total or the orbital angular momentum. Total angular momentum is always conserved, see Noether's theorem.

View the full Wikipedia page for Angular momentum operator
↑ Return to Menu

Operator (physics) in the context of Symmetry in quantum mechanics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non-commuting symmetry operators or that the non-degenerate states are also eigenvectors of symmetry operators.

This article outlines the connection between the classical form of continuous symmetries as well as their quantum operators, and relates them to the Lie groups, and relativistic transformations in the Lorentz group and Poincaré group.

View the full Wikipedia page for Symmetry in quantum mechanics
↑ Return to Menu

Operator (physics) in the context of Stone–von Neumann theorem

In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.

View the full Wikipedia page for Stone–von Neumann theorem
↑ Return to Menu

Operator (physics) in the context of Translation operator (quantum mechanics)

In quantum mechanics, a translation operator is defined as an operator which shifts particles and fields by a certain amount in a certain direction. It is a special case of the shift operator from functional analysis.

More specifically, for any displacement vector , there is a corresponding translation operator that shifts particles and fields by the amount .

View the full Wikipedia page for Translation operator (quantum mechanics)
↑ Return to Menu