Massive particle in the context of "Relativistic quantum mechanics"

Play Trivia Questions online!

or

Skip to study material about Massive particle in the context of "Relativistic quantum mechanics"

Ad spacer

⭐ Core Definition: Massive particle

The physics technical term massive particle refers to a massful particle which has real non-zero rest mass (such as baryonic matter), the counter-part to the term massless particle. According to special relativity, the velocity of a massive particle is always less than the speed of light. When highlighting relativistic speeds, the synonyms bradyon (from Greek: βραδύς, bradys, "slow"), tardyon or ittyon are sometimes used to contrast with luxon (which moves at light speed) and hypothetical tachyon (which moves faster than light).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Massive particle in the context of Relativistic quantum mechanics

In physics, relativistic quantum mechanics (RQM) is any Poincaré-covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high-energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.

Key features common to all RQMs include: the prediction of antimatter, spin magnetic moments of elementary spin-1/2 fermions, fine structure, and quantum dynamics of charged particles in electromagnetic fields. The key result is the Dirac equation, from which these predictions emerge automatically. By contrast, in non-relativistic quantum mechanics, terms have to be introduced artificially into the Hamiltonian operator to achieve agreement with experimental observations.

↓ Explore More Topics
In this Dossier

Massive particle in the context of Dirac equation

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to fully account for special relativity in the context of quantum mechanics. The equation is validated by its rigorous accounting of the observed fine structure of the hydrogen spectrum and has become vital in the building of the Standard Model.

The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved. The existence of antimatter was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin. The wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation, which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. In the context of quantum field theory, the Dirac equation is reinterpreted to describe quantum fields corresponding to spin-1/2 particles.

↑ Return to Menu