Newtonian mechanics in the context of "Hamiltonian operator"

Play Trivia Questions online!

or

Skip to study material about Newtonian mechanics in the context of "Hamiltonian operator"

Ad spacer

⭐ Core Definition: Newtonian mechanics

Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:

  1. A body remains at rest, or in motion at a constant speed in a straight line, unless it is acted upon by a force.
  2. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
  3. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.

The three laws of motion were first stated by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), originally published in 1687. Newton used them to investigate and explain the motion of many physical objects and systems. In the time since Newton, new insights, especially around the concept of energy, built the field of classical mechanics on his foundations. In modern times, limitations to Newton's laws have been discovered; new theories were consequently developed, such as quantum mechanics and relativity to address the physics of objects in more extreme cases.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Newtonian mechanics in the context of Physical cosmology

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

Physical cosmology, as it is now understood, began in 1915 with the development of Albert Einstein's general theory of relativity, followed by major observational discoveries in the 1920s: first, Edwin Hubble discovered that the universe contains a huge number of external galaxies beyond the Milky Way; then, work by Vesto Slipher and others showed that the universe is expanding. These advances made it possible to speculate about the origin of the universe, and allowed the establishment of the Big Bang theory, by Georges Lemaître, as the leading cosmological model. A few researchers still advocate a handful of alternative cosmologies; however, most cosmologists agree that the Big Bang theory best explains the observations.

↑ Return to Menu

Newtonian mechanics in the context of Orbit

In celestial mechanics, an orbit is the curved trajectory of an object under the influence of an attracting force. Known as an orbital revolution, examples include the trajectory of a planet around a star, a natural satellite around a planet, or an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law. However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital motion.

↑ Return to Menu

Newtonian mechanics in the context of Centrifugal force

In Newtonian mechanics, a centrifugal force is a kind of fictitious force (or inertial force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed perpendicularly from the axis of rotation of the frame. The magnitude of the centrifugal force F on an object of mass m at the perpendicular distance ρ from the axis of a rotating frame of reference with angular velocity ω is .

The concept of centrifugal force simplifies the analysis of rotating devices by adopting a co-rotating frame of reference, such as in centrifuges, centrifugal pumps, centrifugal governors, and centrifugal clutches, and in centrifugal railways, planetary orbits and banked curves. The same centrifugal effect observed on rotating devices can be analyzed in an inertial reference frame as a consequence of inertia and the physical forces without invoking a centrifugal force.

↑ Return to Menu

Newtonian mechanics in the context of Celestial mechanics

Celestial mechanics is the branch of astronomy that deals with the motions and gravitational interactions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data. The computation of the motion of the bodies through orbital mechanics can be simplified by using an appropriate inertial frame of reference. This leads to the use of various different coordinate systems, such as the Heliocentric (Sun-centered) coordinate system.

In a binary system of objects interacting through gravity, Newtonian mechanics can used to produce a set of orbital elements that will predict with reasonable accuracy the future position of the two bodies. This method demonstrates the correctness of Kepler's laws of planetary motion. Where one of the bodies is sufficiently massive, general relativity must be included to predict apsidal precession. The problem becomes more complicated when another body is added, creating a three-body problem that can not be solved exactly. Perturbation theory is used to find an approximate solution to this problem.

↑ Return to Menu

Newtonian mechanics in the context of Analytical mechanics

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related formulations of classical mechanics. Analytical mechanics uses scalar properties of motion representing the system as a whole—usually its kinetic energy and potential energy. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.

Analytical mechanics was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system; it can also be called vectorial mechanics. A scalar is a quantity, whereas a vector is represented by quantity and direction. The results of these two different approaches are equivalent, but the analytical mechanics approach has many advantages for complex problems.

↑ Return to Menu