Olivine in the context of "Endmember"

Play Trivia Questions online!

or

Skip to study material about Olivine in the context of "Endmember"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Olivine in the context of Endmember

An endmember (also end-member or end member) in mineralogy is a mineral that is at the extreme end of a mineral series in terms of purity of its chemical composition. Minerals often can be described as solid solutions with varying compositions of some chemical elements, rather than as substances with an exact chemical formula. There may be two or more endmembers in a group or series of minerals.

For example, forsterite (Mg
2
SiO
4
) and fayalite (Fe
2
SiO
4
) are the two end-members of the olivine solid-solution series, varying in Mg
and Fe
in their chemical composition. So, the chemical formula of olivine can be better expressed as Mg(2−x)FexSiO4 or MgxFe(2−x)SiO4.

↓ Explore More Topics
In this Dossier

Olivine in the context of Mafic

A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar. Mafic materials can also be described as ferromagnesian.

↑ Return to Menu

Olivine in the context of Troctolite

Troctolite /ˈtrɒktəlt/ (from Greek τρώκτης 'trout' and λίθος 'stone') is a mafic intrusive rock type. It consists essentially of major but variable amounts of olivine and calcic plagioclase along with minor pyroxene. It is an olivine-rich anorthosite, or a pyroxene-depleted relative of gabbro. However, unlike gabbro, no troctolite corresponds in composition to a partial melt of peridotite. Thus, troctolite is necessarily a cumulate of crystals that have fractionated from melt.

Troctolite is found in some layered intrusions such as in the Archean Windimurra intrusion of Western Australia, the Voisey's Bay nickel-copper-cobalt magmatic sulfide deposit of northern Labrador, the Stillwater igneous complex of Montana, the Duluth Complex of the North American Midcontinent Rift, and the Tertiary Rhum layered intrusion of the island of Rùm, Scotland. Troctolite is also found, for example, in the Merensky Reef of the Bushveld Igneous Complex, South Africa and in the Lizard complex in Cornwall.

↑ Return to Menu

Olivine in the context of Upper mantle

The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about 10 km (6.2 mi) under the oceans, and about 35 km (22 mi) under the continents) and ends at the top of the lower mantle, at about 670 km (420 mi). Temperatures range from around 900 K (627 °C; 1,160 °F) at the upper boundary with the crust to around 1,200 K (930 °C; 1,700 °F) at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5–10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending on depth.

↑ Return to Menu

Olivine in the context of Lunar crust

Having a mean density of 3,346.4 kg/m, the Moon is a differentiated body, being composed of a geochemically distinct crust, mantle, and planetary core. This structure is believed to have resulted from the fractional crystallization of a magma ocean shortly after its formation about 4.5 billion years ago. The energy required to melt the outer portion of the Moon is commonly attributed to a giant impact event that is postulated to have formed the Earth-Moon system, and the subsequent reaccretion of material in Earth orbit. Crystallization of this magma ocean would have given rise to a mafic mantle and a plagioclase-rich crust.

Geochemical mapping from orbit implies that the crust of the Moon is largely anorthositic in composition, consistent with the magma ocean hypothesis. In terms of elements, the lunar crust is composed primarily of oxygen, silicon, magnesium, iron, calcium, and aluminium, but important minor and trace elements such as titanium, uranium, thorium, potassium, sulphur, manganese, chromium, and hydrogen are present as well. Based on geophysical techniques, the crust is estimated to be on average about 50 km thick.

↑ Return to Menu

Olivine in the context of Peridotite

Peridotite (US: /ˈpɛrɪdˌtt, pəˈrɪdə-/ PERR-ih-doh-tyte, pə-RID-ə-) is a dense, phaneritic (coarse-grained) igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

Peridotite is the dominant rock of the upper part of Earth's mantle. The compositions of peridotite nodules found in certain basalts are of special interest along with diamond pipes (kimberlite), because they provide samples of Earth's mantle brought up from depths ranging from about 30 km to 200 km or more. Some of the nodules preserve isotope ratios of osmium and other elements that record processes that occurred when Earth was formed, and so they are of special interest to paleogeologists because they provide clues to the early composition of Earth's mantle and the complexities of the processes that occurred.

↑ Return to Menu

Olivine in the context of Vesicular texture

Vesicular texture is a volcanic rock texture characterized by a rock being pitted with many cavities (known as vesicles) at its surface and inside. This texture is common in aphanitic, or glassy, igneous rocks that have come to the surface of the Earth, a process known as extrusion. As magma rises to the surface the pressure on it decreases. When this happens gasses dissolved in the magma are able to come out of solution, forming gas bubbles (the cavities) inside it. When the magma finally reaches the surface as lava and cools, the rock solidifies around the gas bubbles and traps them inside, preserving them as holes filled with gas called vesicles.

A related texture is amygdaloidal in which the volcanic rock, usually basalt or andesite, has cavities, or vesicles, that are filled with secondary minerals, such as zeolites, calcite, quartz, or chalcedony. Individual cavity fillings are termed amygdules (American usage) or amygdales (British usage). Sometimes these can be sources of semi-precious or precious stones such as diamonds.

↑ Return to Menu

Olivine in the context of Anorthosite

Anorthosite (/əˈnɔːrθəst/) is a phaneritic, intrusive igneous rock characterized by its composition: mostly plagioclase feldspar (90–100%), with a minimal mafic component (0–10%). Pyroxene, ilmenite, magnetite, and olivine are the mafic minerals most commonly present.

Anorthosites are of enormous geologic interest, because it is still not fully understood how they form. Most models involve separating plagioclase crystals based on their density. Plagioclase crystals are usually less dense than magma; so, as plagioclase crystallizes in a magma chamber, the plagioclase crystals float to the top, concentrating there.

↑ Return to Menu

Olivine in the context of Fractional crystallization (geology)

Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within crust and mantle of a rocky planetary body, such as the Earth. It is important in the formation of igneous rocks because it is one of the main processes of magmatic differentiation. Fractional crystallization is also important in the formation of sedimentary evaporite rocks.

↑ Return to Menu

Olivine in the context of Chile Rise

The Chile Ridge, also known as the Chile Rise, is a submarine oceanic ridge formed by the divergent plate boundary between the Nazca plate and the Antarctic plate. It extends from the triple junction of the Nazca, Pacific, and Antarctic plates to the Southern coast of Chile. The Chile Ridge is easy to recognize on the map, as the ridge is divided into several segmented fracture zones which are perpendicular to the ridge segments, showing an orthogonal shape toward the spreading direction. The total length of the ridge segments is about 550–600 km (340–370 mi; 300–320 nmi).

The continuously spreading Chile Ridge collides with the southern South American plate to the east, and the ridge has been subducting underneath the Taitao Peninsula since 14 million years (Ma). The ridge-collision has generated a slab window beneath the overlying South America plate, with smaller volume of upper mantle magma melt, proven by an abrupt low velocity of magma flow rate below the separating Chile ridge. The subduction generates a special type of igneous rocks, represented by the Taitao ophiolites, which is an ultramafic rock composed of olivine and pyroxene, usually found in oceanic plates. In addition, the subduction of the Chile Ridge also creates Taitao granite in Taitao Peninsula which appeared as plutons.

↑ Return to Menu