Upper mantle (Earth) in the context of "Chile Rise"

Play Trivia Questions online!

or

Skip to study material about Upper mantle (Earth) in the context of "Chile Rise"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Upper mantle (Earth) in the context of Chile Rise

The Chile Ridge, also known as the Chile Rise, is a submarine oceanic ridge formed by the divergent plate boundary between the Nazca plate and the Antarctic plate. It extends from the triple junction of the Nazca, Pacific, and Antarctic plates to the Southern coast of Chile. The Chile Ridge is easy to recognize on the map, as the ridge is divided into several segmented fracture zones which are perpendicular to the ridge segments, showing an orthogonal shape toward the spreading direction. The total length of the ridge segments is about 550–600 km (340–370 mi; 300–320 nmi).

The continuously spreading Chile Ridge collides with the southern South American plate to the east, and the ridge has been subducting underneath the Taitao Peninsula since 14 million years (Ma). The ridge-collision has generated a slab window beneath the overlying South America plate, with smaller volume of upper mantle magma melt, proven by an abrupt low velocity of magma flow rate below the separating Chile ridge. The subduction generates a special type of igneous rocks, represented by the Taitao ophiolites, which is an ultramafic rock composed of olivine and pyroxene, usually found in oceanic plates. In addition, the subduction of the Chile Ridge also creates Taitao granite in Taitao Peninsula which appeared as plutons.

↓ Explore More Topics
In this Dossier

Upper mantle (Earth) in the context of Asthenosphere

The asthenosphere (from Ancient Greek ἀσθενός (asthenós) 'without strength') is the mechanically weak and ductile region of the upper mantle of Earth. It lies below the lithosphere, at a depth between c. 80 and 200 km (50 and 120 mi) below the surface, and extends as deep as 700 km (430 mi). However, the lower boundary of the asthenosphere is not well defined.

The asthenosphere is almost solid, but a slight amount of melting (less than 0.1% of the rock) contributes to its mechanical weakness. More extensive decompression melting of the asthenosphere takes place where it wells upwards, and this is the most important source of magma on Earth. It is the source of mid-ocean ridge basalt (MORB) and of some magmas that erupt above subduction zones or in regions of continental rifting.

↑ Return to Menu

Upper mantle (Earth) in the context of Ophiolite

An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed, and often emplaced onto continental crustal rocks.

The Greek word ὄφις, ophis (snake) is found in the name of ophiolites, because of the superficial texture of some of them. Serpentinite especially evokes a snakeskin. (The suffix -lite is from the Greek lithos, meaning "stone".) Some ophiolites have a green color. The origin of these rocks, present in many mountainous massifs, remained uncertain until the advent of plate tectonic theory.

↑ Return to Menu

Upper mantle (Earth) in the context of Divergent boundary

In plate tectonics, a divergent boundary or divergent plate boundary (also known as a constructive boundary or an extensional boundary) is a linear feature that exists between two tectonic plates that are moving away from each other. Divergent boundaries within continents initially produce rifts, which eventually become rift valleys. Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges.

Current research indicates that complex convection within the Earth's mantle allows material to rise to the base of the lithosphere beneath each divergent plate boundary.This supplies the area with huge amounts of heat and a reduction in pressure that melts rock from the asthenosphere (or upper mantle) beneath the rift area, forming large flood basalt or lava flows. Each eruption occurs in only a part of the plate boundary at any one time, but when it does occur, it fills in the opening gap as the two opposing plates move away from each other.

↑ Return to Menu

Upper mantle (Earth) in the context of Lower oceanic crust

The lower oceanic crust is the lower part of the oceanic crust and represents the major part of it (the largest part by volume). It is generally located 4–8 km below the ocean floor and the major lithologies are mafic (ultramafic and gabbroic rocks) which derive from melts rising from the Earth's mantle. This part of the oceanic crust is an important zone for processes such as melt accumulation and melt modification (fractional crystallisation and crustal assimilation). The recycling of this part of the oceanic crust, together with the upper mantle has been suggested as a significant source component for tholeiitic magmas in Hawaiian volcanoes. Although the lower oceanic crust builds the link between the mantle and the MORB, and can't be neglected for the understanding of MORB evolution, the complex processes operating in this zone remain unclear and there is an ongoing debate in Earth Sciences about this. It is 6KM long.

↑ Return to Menu

Upper mantle (Earth) in the context of Peridotite

Peridotite (US: /ˈpɛrɪdoʊˌtaɪt, pəˈrɪdə-/ PERR-ih-doh-tyte, pə-RID-ə-) is a dense, phaneritic (coarse-grained) igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

Peridotite is the dominant rock of the upper part of Earth's mantle. The compositions of peridotite nodules found in certain basalts are of special interest along with diamond pipes (kimberlite), because they provide samples of Earth's mantle brought up from depths ranging from about 30 km to 200 km or more. Some of the nodules preserve isotope ratios of osmium and other elements that record processes that occurred when Earth was formed, and so they are of special interest to paleogeologists because they provide clues to the early composition of Earth's mantle and the complexities of the processes that occurred.

↑ Return to Menu

Upper mantle (Earth) in the context of International Association of Volcanology and Chemistry of the Earth's Interior

The International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) is a learned society that focuses on research in volcanology, efforts to mitigate volcanic disasters, and research into closely related disciplines, such as igneous geochemistry and petrology, geochronology, volcanogenic mineral deposits, and the physics of the generation and ascent of magmas in the upper mantle and crust. It is one of eight constituent associations of the International Union of Geodesy and Geophysics (IUGG).

IAVCEI is run by an executive committee whose membership changes every four years. The Executive determines policies for the Association, enacting them through a series of commissions and task groups. Bulletin of Volcanology is the journal of IAVCEI.

↑ Return to Menu

Upper mantle (Earth) in the context of Serpentinite

Serpentinite is a metamorphic rock composed predominantly of serpentine group minerals formed by serpentinization of mafic or ultramafic rocks. The ancient origin of the name is uncertain; it may be from the similarity of its texture or color to snake skin. Greek pharmacologist Dioscorides (AD 50) recommended this rock to prevent snakebite.

Serpentinite has been called serpentine or serpentine rock, particularly in older geological texts and in wider cultural settings.

↑ Return to Menu

Upper mantle (Earth) in the context of Volcanic belt

A volcanic belt is a large volcanically active region. Other terms are used for smaller areas of activity, such as volcanic fields or volcanic systems. Volcanic belts are found above zones of unusually high temperature (700 to 1,400 °C (1,292 to 2,552 °F)) where magma is created by partial melting of solid material in the Earth's crust and upper mantle. These areas usually form along tectonic plate boundaries at depths of 10 to 50 kilometres (6.2 to 31.1 mi). For example, volcanoes in Mexico and western North America are mostly in volcanic belts, such as the Trans-Mexican Volcanic Belt that extends 900 kilometres (560 mi) from west to east across central-southern Mexico and the Northern Cordilleran Volcanic Province in western Canada. In the case of Iceland, the geologist G.G. Bárdarson in 1929 identified clusters of volcanic belts while studying the Reykjanes Peninsula.

The deeply deformed and eroded remnants of ancient volcanic belts are found in volcanically inactive regions such as the Canadian Shield. It contains over 150 volcanic belts (now deformed and eroded down to nearly flat plains) that range from 600 to 1,200 million years old. These are zones of variably metamorphosed mafic to ultramafic volcanic sequences with associated sedimentary rocks that form what are known as greenstone belts. They are thought to have formed at ancient oceanic spreading centers and island arc terranes. The Abitibi greenstone belt in Ontario and Quebec, Canada is one of the world's largest greenstone belts.

↑ Return to Menu