Nuclide in the context of "Isotopes"

Play Trivia Questions online!

or

Skip to study material about Nuclide in the context of "Isotopes"

Ad spacer

⭐ Core Definition: Nuclide

Nuclides (or nucleides, from nucleus; also known as nuclear species) are a class of atoms characterized by their number of protons, Z, their number of neutrons, N, and their nuclear energy state.

The word nuclide was coined by the American nuclear physicist Truman P. Kohman in 1947. Kohman defined nuclide as a "species of atom characterized by the constitution of its nucleus" containing a certain number of neutrons and protons. The term thus originally focused on the nucleus.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Nuclide in the context of Lithium

Lithium (from Ancient Greek: λίθος, líthos, 'stone') is a chemical element; it has symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid element. Like all alkali metals, lithium is highly reactive and flammable, and must be stored in vacuum, inert atmosphere, or inert liquid such as purified kerosene or mineral oil. It exhibits a metallic luster when pure, but quickly corrodes in air to a dull silvery gray, then black tarnish. It does not occur freely in nature, but occurs mainly as pegmatitic minerals, which were once the main source of lithium. Due to its solubility as an ion, it is present in ocean water and is commonly obtained from brines. Lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride.

The nucleus of the lithium atom verges on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative nuclear instability, lithium is less common in the Solar System than 25 of the first 32 chemical elements even though its nuclei are very light: it is an exception to the trend that heavier nuclei are less common. For related reasons, lithium has important uses in nuclear physics. The transmutation of lithium atoms to helium in 1932 was the first fully human-made nuclear reaction, and lithium deuteride serves as a fusion fuel in staged thermonuclear weapons.

↑ Return to Menu

Nuclide in the context of Neutron radiation

Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a proton, an electron, plus an electron antineutrino. Free neutrons have a mean lifetime of 887 seconds (14 minutes, 47 seconds).

Neutron radiation is distinct from alpha, beta and gamma radiation.

↑ Return to Menu

Nuclide in the context of Isotope

Isotopes are distinct nuclear species (or nuclides) of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but different nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have virtually the same chemical properties, they have different atomic masses and physical properties.

The term isotope comes from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place": different isotopes of an element occupy the same place on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in a 1913 suggestion to the British chemist Frederick Soddy, who popularized the term.

↑ Return to Menu

Nuclide in the context of Nuclear reaction

In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle, they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

In principle, a reaction can involve more than two particles colliding, but because the probability of three or more nuclei to meet at the same time at the same place is much less than for two nuclei, such an event is exceptionally rare (see triple alpha process for an example very close to a three-body nuclear reaction). The term "nuclear reaction" may refer either to a change in a nuclide induced by collision with another particle or to a spontaneous change of a nuclide without collision.

↑ Return to Menu

Nuclide in the context of Radioisotope

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that is unstable and known to undergo radioactive decay into a different nuclide, which may be another radionuclide (see decay chain) or be stable. Radiation emitted by radionuclides is almost always ionizing radiation because it is energetic enough to liberate an electron from another atom.

Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide, the decay rate (considered as a statistical average), and thus the half-life (t1/2) for that nuclide, can be calculated from the measurement of the decay. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

↑ Return to Menu

Nuclide in the context of Cosmogenic nuclide

Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an in situ Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom (see cosmic ray spallation). These nuclides are produced within Earth materials such as rocks or soil, in Earth's atmosphere, and in extraterrestrial items such as meteoroids. By measuring cosmogenic nuclides, scientists are able to gain insight into a range of geological and astronomical processes. There are both radioactive and stable cosmogenic nuclides. Some of these radionuclides are tritium, carbon-14 and phosphorus-32.

Certain light (low atomic number) primordial nuclides (isotopes of lithium, beryllium and boron) are thought to have been created not only during the Big Bang, but also (and perhaps primarily) to have been made after the Big Bang, but before the condensation of the Solar System, by the process of cosmic ray spallation on interstellar gas and dust. This explains their higher abundance in cosmic dust as compared with their abundances on Earth. This also explains the overabundance of the early transition metals just before iron in the periodic table – the cosmic-ray spallation of iron produces scandium through chromium on the one hand and helium through boron on the other. However, the arbitrary defining qualification for cosmogenic nuclides of being formed "in situ in the Solar System" (meaning inside an already aggregated piece of the Solar System) prevents primordial nuclides formed by cosmic ray spallation before the formation of the Solar System from being termed "cosmogenic nuclides"—even though the mechanism for their formation is exactly the same. These same nuclides still arrive on Earth in small amounts in cosmic rays, and are formed in meteoroids, in the atmosphere, on Earth, "cosmogenically". However, beryllium (all of it stable beryllium-9) is present primordially in the Solar System in much larger amounts, having existed prior to the condensation of the Solar System, and thus present in the materials from which the Solar System formed.

↑ Return to Menu

Nuclide in the context of Beta decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in what is called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

Beta decay is a consequence of the weak force, which is characterized by relatively long decay times. Nucleons are composed of up quarks and down quarks, and the weak force allows a quark to change its flavour by means of a virtual W boson leading to creation of an electron/antineutrino or positron/neutrino pair. For example, a neutron, composed of two down quarks and an up quark, decays to a proton composed of a down quark and two up quarks.

↑ Return to Menu