Beta decay in the context of "Nuclide"

Play Trivia Questions online!

or

Skip to study material about Beta decay in the context of "Nuclide"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Beta decay in the context of Electron neutrino

The electron neutrino (ν
e
) is an elementary particle which has zero electric charge and a spin of 12. Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment).

↑ Return to Menu

Beta decay in the context of Weak interaction

In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavordynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by electroweak theory (EWT).

The effective range of the weak force is limited to subatomic distances and is less than the diameter of a proton.

↑ Return to Menu

Beta decay in the context of Beta radiation

A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β decay and β decay, which produce electrons and positrons, respectively.

Beta particles with an energy of 0.5 MeV have a range of about one metre in the air; the distance is dependent on the particle's energy and the air's density and composition.

↑ Return to Menu

Beta decay in the context of Radioactive decay

Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic and nuclear forces.

Radioactive decay is a random process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life. The half-lives of radioactive atoms have a huge range: from nearly instantaneous to far longer than the age of the universe.

↑ Return to Menu

Beta decay in the context of Potassium-40

Potassium-40 (K) is a long lived and the main naturally occurring radioactive isotope of potassium, with a half-life of 1.248 billion years. It makes up about 117 ppmTooltip parts-per-million of natural potassium, making that mixture very weakly radioactive; the short life meant this was significantly larger earlier in Earth's history.

Potassium-40 undergoes four different paths of radioactive decay, including all three main types of beta decay:

↑ Return to Menu

Beta decay in the context of Antimatter

In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or going backward in time (see CPT symmetry). Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators, but total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Nonetheless, antimatter is an essential component of widely available applications related to beta decay, such as positron emission tomography, radiation therapy, and industrial imaging.

In theory, a particle and its antiparticle (for example, a proton and an antiproton) have the same mass, but opposite electric charge, and other differences in quantum numbers.

↑ Return to Menu

Beta decay in the context of Carbon-14

Carbon-14, C-14, C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by Martin Kamen and Sam Ruben at the University of California Radiation Laboratory in Berkeley, California. Its existence had been suggested by Franz Kurie in 1934.

There are three naturally occurring isotopes of carbon on Earth: carbon-12 (C), which makes up 99% of all carbon on Earth; carbon-13 (C), which makes up 1%; and carbon-14 (C), which occurs in trace amounts, making up about 1.2 atoms per 10 atoms of carbon in the atmosphere. C and C are both stable; C is unstable, with half-life 5700±30 years, decaying into nitrogen-14 (
N
) through beta decay. Pure carbon-14 would have a specific activity of 62.4 mCi/mmol (2.31 GBq/mmol), or 164.9 GBq/g. The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a cosmogenic nuclide. Open-air nuclear testing between 1955 and 1980 contributed to this pool, however.

↑ Return to Menu

Beta decay in the context of James Chadwick

Sir James Chadwick (20 October 1891 – 24 July 1974) was a British experimental physicist who received the Nobel Prize in Physics in 1935 for his discovery of the neutron. In 1941, he wrote the final draft of the MAUD Report, which inspired the U.S. government to begin serious atomic bomb research efforts. He was the head of the British team that worked on the Manhattan Project during World War II. He was knighted in Britain in 1945 for his achievements in nuclear physics.

Chadwick graduated from the Victoria University of Manchester in 1911, where he studied under Ernest Rutherford (known as the "father of nuclear physics"). At Manchester, he continued to study under Rutherford until he was awarded his MSc in 1913. The same year, Chadwick was awarded an 1851 Research Fellowship from the Royal Commission for the Exhibition of 1851. He elected to study beta radiation under Hans Geiger in Berlin. Using Geiger's recently developed Geiger counter, Chadwick was able to demonstrate that beta radiation produced a continuous spectrum, and not discrete lines as had been thought. Still in Germany when World War I broke out in Europe, he spent the next four years in the Ruhleben internment camp.

↑ Return to Menu

Beta decay in the context of Wolfgang Pauli

Wolfgang Ernst Pauli (/ˈpɔːli/ PAW-lee; German: [ˈpaʊ̯li] ; 25 April 1900 – 15 December 1958) was an Austrian–Swiss theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the discovery of the Exclusion Principle, also called the Pauli Principle". The discovery involved spin theory, which is the basis of a theory of the structure of matter.

To preserve the conservation of energy in beta decay, Pauli proposed the existence of a small neutral particle, dubbed the neutrino by Enrico Fermi, in 1930. Neutrinos were first detected in 1956.

↑ Return to Menu