Geiger counter in the context of "James Chadwick"

Play Trivia Questions online!

or

Skip to study material about Geiger counter in the context of "James Chadwick"

Ad spacer

⭐ Core Definition: Geiger counter

Geiger counter (/ˈɡɡər/, GY-gər; also known as a Geiger–Müller counter or G-M counter) is an electronic instrument for detecting and measuring ionizing radiation with the use of a Geiger–Müller tube. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics and the nuclear industry.

It detects ionizing radiation such as alpha particles, beta particles, and gamma rays using the ionization effect produced in a Geiger–Müller tube, which gives its name to the instrument.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Geiger counter in the context of James Chadwick

Sir James Chadwick (20 October 1891 – 24 July 1974) was a British experimental physicist who received the Nobel Prize in Physics in 1935 for his discovery of the neutron. In 1941, he wrote the final draft of the MAUD Report, which inspired the U.S. government to begin serious atomic bomb research efforts. He was the head of the British team that worked on the Manhattan Project during World War II. He was knighted in Britain in 1945 for his achievements in nuclear physics.

Chadwick graduated from the Victoria University of Manchester in 1911, where he studied under Ernest Rutherford (known as the "father of nuclear physics"). At Manchester, he continued to study under Rutherford until he was awarded his MSc in 1913. The same year, Chadwick was awarded an 1851 Research Fellowship from the Royal Commission for the Exhibition of 1851. He elected to study beta radiation under Hans Geiger in Berlin. Using Geiger's recently developed Geiger counter, Chadwick was able to demonstrate that beta radiation produced a continuous spectrum, and not discrete lines as had been thought. Still in Germany when World War I broke out in Europe, he spent the next four years in the Ruhleben internment camp.

↓ Explore More Topics
In this Dossier

Geiger counter in the context of Willard Libby

Willard Frank Libby (December 17, 1908 – September 8, 1980) was an American physical chemist noted for his role in the 1949 development of radiocarbon dating, a process which revolutionized archaeology and palaeontology. For his contributions to the team that developed this process, Libby was awarded the Nobel Prize in Chemistry in 1960.

A 1931 chemistry graduate of the University of California, Berkeley, from which he received his doctorate in 1933, he studied radioactive elements and developed sensitive Geiger counters to measure weak natural and artificial radioactivity. During World War II he worked in the Manhattan Project's Substitute Alloy Materials (SAM) Laboratories at Columbia University, developing the gaseous diffusion process for uranium enrichment.

↑ Return to Menu

Geiger counter in the context of X-ray detector

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

Detectors can be divided into two major categories: imaging detectors (such as photographic plates and X-ray film (photographic film), now mostly replaced by various digitizing devices like image plates or flat panel detectors) and dose measurement devices (such as ionization chambers, Geiger counters, and dosimeters used to measure the local radiation exposure, dose, and/or dose rate, for example, for verifying that radiation protection equipment and procedures are effective on an ongoing basis).

↑ Return to Menu

Geiger counter in the context of Schrödinger's cat

In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition. In the thought experiment, a hypothetical cat in a closed box may be considered to be simultaneously both alive and dead while it is unobserved, as a result of its fate being linked to a random subatomic event that may or may not occur. This experiment, viewed this way, is described as a paradox. This thought experiment was devised by physicist Erwin Schrödinger in 1935 in a discussion with Albert Einstein to illustrate what Schrödinger saw as the problems of Niels Bohr and Werner Heisenberg's philosophical views on quantum mechanics.

In Schrödinger's original formulation, a cat, a flask of poison, and a radioactive source are placed in a sealed box. If an internal radiation monitor such as a Geiger counter detects radioactivity (a single atom decaying), the flask is shattered, releasing the poison, which kills the cat. If no decaying atom triggers the monitor, the cat remains alive. Mathematically, the wave function that describes the contents of the box is a combination, or quantum superposition, of these two possibilities. Yet, when one looks in the box, one sees the cat either alive or dead, not both alive and dead. This poses the question of when exactly quantum superposition ends and reality resolves into one possibility or the other.

↑ Return to Menu

Geiger counter in the context of Point process

In statistics and probability theory, a point process or point field is a set of a random number of mathematical points randomly located on a mathematical space such as the real line or Euclidean space.

Point processes on the real line form an important special case that is particularly amenable to study, because the points are ordered in a natural way, and the whole point process can be described completely by the (random) intervals between the points. These point processes are frequently used as models for random events in time, such as the arrival of customers in a queue (queueing theory), of impulses in a neuron (computational neuroscience), particles in a Geiger counter, location of radio stations in a telecommunication network or of searches on the world-wide web.

↑ Return to Menu

Geiger counter in the context of Hans Geiger

Johannes Wilhelm "Hans" Geiger (/ˈɡɡər, ˈɡɡə/ GYE-ger, GYE-guh; German: [ˈɡaɪɡɐ] ; 30 September 1882 – 24 September 1945) was a German experimental physicist. He is known as the inventor of the Geiger counter, a device used to detect ionizing radiation, and for carrying out the Rutherford scattering experiments, which led to the discovery of the atomic nucleus. He also performed the Bothe–Geiger coincidence experiment, which confirmed the conservation of energy in light-particle interactions.

He was the brother of meteorologist and climatologist Rudolf Geiger.

↑ Return to Menu

Geiger counter in the context of Leona Woods

Leona Harriet Woods (August 9, 1919 – November 10, 1986), later known as Leona Woods Marshall and Leona Woods Marshall Libby, was an American physicist who helped build the first nuclear reactor and the first atomic bomb.

At age 23, she was the youngest and only female member of the team which built and experimented with the world's first nuclear reactor (then called a pile), Chicago Pile-1, in a project led by her mentor Enrico Fermi. In particular, Woods was instrumental in the construction and then utilization of geiger counters for analysis during experimentation. She was the only woman present when the reactor went critical. She worked with Fermi on the Manhattan Project, and she subsequently helped evaluate the cross section of xenon, which had poisoned the first Hanford production reactor when it began operation.

↑ Return to Menu