Non-volatile memory in the context of 3D XPoint


Non-volatile memory in the context of 3D XPoint

Non-volatile memory Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Non-volatile memory in the context of "3D XPoint"


⭐ Core Definition: Non-volatile memory

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.

Non-volatile memory typically refers to storage in memory chips, which store data in floating-gate memory cells consisting of floating-gate MOSFETs (metal–oxide–semiconductor field-effect transistors), including flash memory storage such as NAND flash and solid-state drives (SSD).

↓ Menu
HINT:

In this Dossier

Non-volatile memory in the context of SIM cards

A SIM card or SIM (subscriber identity module) is an integrated circuit (IC) in the range of a 25 MHz 32 bit CPU, and 256 KB of NVM. SIMs are intended to securely store an international mobile subscriber identity (IMSI) number and its related key, which are used to identify and authenticate subscribers on mobile telephone devices (such as mobile phones, tablets, and laptops). SIMs are also able to run apps and to store arbitrary information like address book contact information, and may be protected using a PIN code to prevent unauthorized use.

These SIM cards are always used on GSM phones; for CDMA phones, they are needed only for LTE-capable handsets. SIM cards are also used in various satellite phones, smart watches, computers, or cameras. The first SIM cards were the size of credit and bank cards; sizes were reduced several times over the years, usually keeping electrical contacts the same, to fit smaller-sized devices. SIMs are transferable between different mobile devices by removing the card itself.

View the full Wikipedia page for SIM cards
↑ Return to Menu

Non-volatile memory in the context of Magnetic storage

Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is accessed using one or more read/write heads.

Magnetic storage media, primarily hard disks, are widely used to store computer data as well as audio and video signals. In the field of computing, the term magnetic storage is preferred and in the field of audio and video production, the term magnetic recording is more commonly used. The distinction is less technical and more a matter of preference. Other examples of magnetic storage media include floppy disks, magnetic tape, and magnetic stripes on credit cards.

View the full Wikipedia page for Magnetic storage
↑ Return to Menu

Non-volatile memory in the context of Flash memory

Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use the same cell design, consisting of floating-gate MOSFETs. They differ at the circuit level, depending on whether the state of the bit line or word lines is pulled high or low; in NAND flash, the relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate.

Flash memory, a type of floating-gate memory, was invented by Fujio Masuoka at Toshiba in 1980 and is based on EEPROM technology. Toshiba began marketing flash memory in 1987. EPROMs had to be erased completely before they could be rewritten. NAND flash memory, however, may be erased, written, and read in blocks (or pages), which generally are much smaller than the entire device. NOR flash memory allows a single machine word to be written – to an erased location – or read independently. A flash memory device typically consists of one or more flash memory chips (each holding many flash memory cells), along with a separate flash memory controller chip.

View the full Wikipedia page for Flash memory
↑ Return to Menu

Non-volatile memory in the context of Memory chip

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory (such as EPROM, EEPROM and flash memory) uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.

Most types of semiconductor memory have the property of random access, which means that it takes the same amount of time to access any memory location, so data can be efficiently accessed in any random order. This contrasts with data storage media such as CDs which read and write data consecutively and therefore the data can only be accessed in the same sequence it was written. Semiconductor memory also has much faster access times than other types of data storage; a byte of data can be written to or read from semiconductor memory within a few nanoseconds, while access time for rotating storage such as hard disks is in the range of milliseconds. For these reasons it is used for primary storage, to hold the program and data the computer is currently working on, among other uses.

View the full Wikipedia page for Memory chip
↑ Return to Menu

Non-volatile memory in the context of Smart toy

A smart toy is an interactive artificially intelligent toy which effectively has its own intelligence by virtue of on-board electronics. These enable it to learn, behave according to preset patterns, and alter its actions depending upon environmental stimuli and user input. Typically, it can adjust to the abilities of the player. A modern smart toy has electronics consisting of one or more microprocessors or microcontrollers, volatile and/or non-volatile memory, storage devices, and various forms of input–output devices. It may be networked together with other smart toys or a personal computer in order to enhance its play value or educational features. Generally, the smart toy may be controlled by software which is embedded in firmware or else loaded from an input device such as a USB flash drive, Memory Stick or CD-ROM. Smart toys frequently have extensive multimedia capabilities, and these can be utilized to produce a realistic, animated, simulated personality for the toy. Some commercial examples of smart toys are Amazing Amanda, Furby and iDog. The first smart-toy was the Mego Corporation's 2-XL robot (2XL), invented in the 1970s

View the full Wikipedia page for Smart toy
↑ Return to Menu

Non-volatile memory in the context of Secure Digital

The SD card is a proprietary, non-volatile, flash memory card format developed by the SD Association (SDA). They come in three physical forms: the full-size SD, the smaller miniSD (now obsolete), and the smallest, microSD. Owing to their compact form factor, SD cards have been widely adopted in a variety of portable consumer electronics, including digital cameras, camcorders, video game consoles, mobile phones, action cameras, and camera drones.

The format was introduced in August 1999 as Secure Digital by SanDisk, Panasonic (then known as Matsushita), and Kioxia (then part of Toshiba). It was designed as a successor to the MultiMediaCard (MMC) format, introducing several enhancements including a digital rights management (DRM) feature, a more durable physical casing, and a mechanical write-protect switch. These improvements, combined with strong industry support, contributed to its widespread adoption.

View the full Wikipedia page for Secure Digital
↑ Return to Menu

Non-volatile memory in the context of Write once read many

Write once read many (WORM) describes a data storage device in which information, once written, cannot be modified. This write protection affords the assurance that the data cannot be tampered with once it is written to the device, excluding the possibility of data loss from human error, computer bugs, or malware.

On ordinary (non-WORM) data storage devices, the number of times data can be modified is limited only by the lifespan of the device, as modification involves physical changes that may cause wear to the device. The "read many" aspect is unremarkable, as modern storage devices permit unlimited reading of data once written. Historical exceptions include time-limited discs such as Flexplay, designed for short-term rental of movies; and early non-volatile memory technologies such as magnetic-core memory and bubble memory, from which reading data also erased it.

View the full Wikipedia page for Write once read many
↑ Return to Menu

Non-volatile memory in the context of Bootloader

A bootloader, also spelled as boot loader or called bootstrap loader, is a computer program that is responsible for booting a computer and booting an operating system. If it also provides an interactive menu with multiple boot choices then it is often called a boot manager.

When a computer is turned off, its software‍—‌including operating systems, application code, and data‍—‌remains stored on non-volatile memory. When the computer is powered on, it typically does not have an operating system or its loader in random-access memory (RAM). The computer first executes a relatively small program stored in the boot ROM, which is read-only memory (ROM, and later EEPROM, NOR flash) along with some needed data, to initialize hardware devices such as CPU, motherboard, memory, storage and other I/O devices, to access the nonvolatile device (usually a block device, e.g., NAND flash) or devices from which the operating system programs and data can be loaded into RAM.

View the full Wikipedia page for Bootloader
↑ Return to Menu

Non-volatile memory in the context of Read-Only Memory

Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications, such as video games, for programmable devices can be distributed as plug-in cartridges containing ROM.

Strictly speaking, read-only memory refers to hard-wired memory, such as diode matrix or a mask ROM integrated circuit (IC), that cannot be electronically changed after manufacture. Although discrete circuits can be altered in principle, through the addition of bodge wires and the removal or replacement of components, ICs cannot. Correction of errors, or updates to the software, require new devices to be manufactured and to replace the installed device.

View the full Wikipedia page for Read-Only Memory
↑ Return to Menu

Non-volatile memory in the context of DRAM

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

View the full Wikipedia page for DRAM
↑ Return to Menu

Non-volatile memory in the context of EEPROM

EEPROM or EPROM (electrically erasable programmable read-only memory) is a type of non-volatile memory. It is used in computers, usually integrated in microcontrollers such as smart cards and remote keyless systems, or as a separate chip device, to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.

EEPROMs are organized as arrays of floating-gate transistors. EEPROMs can be programmed and erased in-circuit, by applying special programming signals. Originally, EEPROMs were limited to single-byte operations, which made them slower, but modern EEPROMs allow multi-byte page operations. An EEPROM has a limited life for erasing and reprogramming, reaching a million operations in modern EEPROMs. In an EEPROM that is frequently reprogrammed, the life of the EEPROM is an important design consideration.

View the full Wikipedia page for EEPROM
↑ Return to Menu

Non-volatile memory in the context of Dynamic RAM

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

View the full Wikipedia page for Dynamic RAM
↑ Return to Menu