Volatile memory in the context of DRAM


Volatile memory in the context of DRAM

Volatile memory Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Volatile memory in the context of "DRAM"


HINT:

👉 Volatile memory in the context of DRAM

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

↓ Explore More Topics
In this Dossier

Volatile memory in the context of Non-volatile memory

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.

Non-volatile memory typically refers to storage in memory chips, which store data in floating-gate memory cells consisting of floating-gate MOSFETs (metal–oxide–semiconductor field-effect transistors), including flash memory storage such as NAND flash and solid-state drives (SSD).

View the full Wikipedia page for Non-volatile memory
↑ Return to Menu

Volatile memory in the context of Smart toy

A smart toy is an interactive artificially intelligent toy which effectively has its own intelligence by virtue of on-board electronics. These enable it to learn, behave according to preset patterns, and alter its actions depending upon environmental stimuli and user input. Typically, it can adjust to the abilities of the player. A modern smart toy has electronics consisting of one or more microprocessors or microcontrollers, volatile and/or non-volatile memory, storage devices, and various forms of input–output devices. It may be networked together with other smart toys or a personal computer in order to enhance its play value or educational features. Generally, the smart toy may be controlled by software which is embedded in firmware or else loaded from an input device such as a USB flash drive, Memory Stick or CD-ROM. Smart toys frequently have extensive multimedia capabilities, and these can be utilized to produce a realistic, animated, simulated personality for the toy. Some commercial examples of smart toys are Amazing Amanda, Furby and iDog. The first smart-toy was the Mego Corporation's 2-XL robot (2XL), invented in the 1970s

View the full Wikipedia page for Smart toy
↑ Return to Menu

Volatile memory in the context of Random-access memory

Random-access memory (RAM; /ræm/) is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks and magnetic tape), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

In modern technology, random-access memory takes the form of integrated circuit (IC) chips with MOS (metal–oxide–semiconductor) memory cells. RAM is normally associated with volatile types of memory where stored information is lost if power is removed. The two main types of volatile random-access semiconductor memory are static random-access memory (SRAM) and dynamic random-access memory (DRAM).

View the full Wikipedia page for Random-access memory
↑ Return to Menu

Volatile memory in the context of Static RAM

Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed.

The static qualifier differentiates SRAM from dynamic random-access memory (DRAM):

View the full Wikipedia page for Static RAM
↑ Return to Menu

Volatile memory in the context of Dynamic RAM

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

View the full Wikipedia page for Dynamic RAM
↑ Return to Menu

Volatile memory in the context of Durability (computer science)

In database systems, durability is the ACID property that guarantees that the effects of transactions that have been committed will survive permanently, even in cases of failures, including incidents and catastrophic events. For example, if a flight booking reports that a seat has successfully been booked, then the seat will remain booked even if the system crashes.

Formally, a database system ensures the durability property if it tolerates three types of failures: transaction, system, and media failures. In particular, a transaction fails if its execution is interrupted before all its operations have been processed by the system. These kinds of interruptions can be originated at the transaction level by data-entry errors, operator cancellation, timeout, or application-specific errors, like withdrawing money from a bank account with insufficient funds. At the system level, a failure occurs if the contents of the volatile storage are lost, due, for instance, to system crashes, like out-of-memory events. At the media level, where media means a stable storage that withstands system failures, failures happen when the stable storage, or part of it, is lost. These cases are typically represented by disk failures.

View the full Wikipedia page for Durability (computer science)
↑ Return to Menu

Volatile memory in the context of Dynamic random-access memory

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell. A DRAM memory cell usually consists of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

View the full Wikipedia page for Dynamic random-access memory
↑ Return to Menu