Nitrate in the context of Sodium nitrate


Nitrate in the context of Sodium nitrate

Nitrate Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Nitrate in the context of "Sodium nitrate"


⭐ Core Definition: Nitrate

Nitrate is a polyatomic ion with the chemical formula NO
3
. Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are soluble in water. An example of an insoluble nitrate is bismuth oxynitrate.

↓ Menu
HINT:

In this Dossier

Nitrate in the context of Wetland

A wetland is a distinct semi-aquatic ecosystem whose groundcovers are flooded or saturated in water, either permanently, for years or decades, or only seasonally. Flooding results in oxygen-poor (anoxic) processes taking place, especially in the soils. Wetlands form a transitional zone between waterbodies and dry lands, and are different from other terrestrial or aquatic ecosystems due to their vegetation's roots having adapted to oxygen-poor waterlogged soils. They are considered among the most biologically diverse of all ecosystems, serving as habitats to a wide range of aquatic and semi-aquatic plants and animals, with often improved water quality due to plant removal of excess nutrients such as nitrates and phosphorus.

Wetlands exist on every continent, except Antarctica. The water in wetlands is either freshwater, brackish or saltwater. The main types of wetland are defined based on the dominant plants and the source of the water. For example, marshes are wetlands dominated by emergent herbaceous vegetation such as reeds, cattails and sedges. Swamps are dominated by woody vegetation such as trees and shrubs (although reed swamps in Europe are dominated by reeds, not trees). Mangrove forest are wetlands with mangroves and halophytic woody plants that have evolved to tolerate salty water.

View the full Wikipedia page for Wetland
↑ Return to Menu

Nitrate in the context of Reuse of excreta

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients (mainly nitrogen, phosphorus and potassium) that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

There is a large and growing number of treatment options to make excreta safe and manageable for the intended reuse option. Options include urine diversion and dehydration of feces (urine-diverting dry toilets), composting (composting toilets or external composting processes), sewage sludge treatment technologies and a range of fecal sludge treatment processes. They all achieve various degrees of pathogen removal and reduction in water content for easier handling. Pathogens of concern are enteric bacteria, virus, protozoa, and helminth eggs in feces. As the helminth eggs are the pathogens that are the most difficult to destroy with treatment processes, they are commonly used as an indicator organism in reuse schemes. Other health risks and environmental pollution aspects that need to be considered include spreading micropollutants, pharmaceutical residues and nitrate in the environment which could cause groundwater pollution and thus potentially affect drinking water quality.

View the full Wikipedia page for Reuse of excreta
↑ Return to Menu

Nitrate in the context of Nitrogen

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colourless and odourless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

It was first discovered and isolated by Scottish physician Daniel Rutherford in 1772 and independently by Carl Wilhelm Scheele and Henry Cavendish at about the same time. The name nitrogène was suggested by French chemist Jean-Antoine-Claude Chaptal in 1790 when it was found that nitrogen was present in nitric acid and nitrates. Antoine Lavoisier suggested instead the name azote, from the Ancient Greek: ἀζωτικός "no life", as it is an asphyxiant gas; this name is used in a number of languages, and appears in the English names of some nitrogen compounds such as hydrazine, azides and azo compounds.

View the full Wikipedia page for Nitrogen
↑ Return to Menu

Nitrate in the context of Biogeochemical cycle

A biogeochemical cycle, or more generally a cycle of matter, is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is transformed and cycled by living organisms and through various geological forms and reservoirs, including the atmosphere, the soil and the oceans. It can be thought of as the pathway by which a chemical substance cycles (is turned over or moves through) the biotic compartment and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, lithosphere and hydrosphere.

For example, in the carbon cycle, atmospheric carbon dioxide is absorbed by plants through photosynthesis, which converts it into organic compounds that are used by organisms for energy and growth. Carbon is then released back into the atmosphere through respiration and decomposition. Additionally, carbon is stored in fossil fuels and is released into the atmosphere through human activities such as burning fossil fuels. In the nitrogen cycle, atmospheric nitrogen gas is converted by plants into usable forms such as ammonia and nitrates through the process of nitrogen fixation. These compounds can be used by other organisms, and nitrogen is returned to the atmosphere through denitrification and other processes. In the water cycle, the universal solvent water evaporates from land and oceans to form clouds in the atmosphere, and then precipitates back to different parts of the planet. Precipitation can seep into the ground and become part of groundwater systems used by plants and other organisms, or can runoff the surface to form lakes and rivers. Subterranean water can then seep into the ocean along with river discharges, rich with dissolved and particulate organic matter and other nutrients.

View the full Wikipedia page for Biogeochemical cycle
↑ Return to Menu

Nitrate in the context of Potassium nitrate

Potassium nitrate is a chemical compound with a sharp, salty, bitter taste and the chemical formula KNO3. It is a potassium salt of nitric acid. This salt consists of potassium cations K and nitrate anions NO3, and is therefore an alkali metal nitrate. It occurs in nature as a mineral, niter (or nitre outside the United States). It is a source of nitrogen, and nitrogen was named after niter. Potassium nitrate is one of several nitrogen-containing compounds collectively referred to as saltpetre (or saltpeter in the United States).

Major uses of potassium nitrate are in fertilizers, tree stump removal, rocket propellants and fireworks. It is one of the major constituents of traditional gunpowder (black powder). In processed meats, potassium nitrate reacts with hemoglobin and myoglobin generating a red color.

View the full Wikipedia page for Potassium nitrate
↑ Return to Menu

Nitrate in the context of Polyatomic ion

A polyatomic ion (also known as a molecular ion) is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that usually has a net charge that is not zero, or in special case of zwitterion where spatially separated charges where the net charge may be variable depending on acidity conditions. The term molecule may or may not be used to refer to a polyatomic ion, depending on the definition used. The prefix poly- carries the meaning "many" in Greek, but even ions of two atoms are commonly described as polyatomic. There may be more than one atom in the structure that has non-zero charge, therefore the net charge of the structure may have a cationic (positive) or anionic nature depending on those atomic details.

In older literature, a polyatomic ion may instead be referred to as a radical (or less commonly, as a radical group). In contemporary usage, the term radical refers to various free radicals, which are species that have an unpaired electron and need not be charged.

View the full Wikipedia page for Polyatomic ion
↑ Return to Menu

Nitrate in the context of War of the Pacific

The War of the Pacific (Spanish: Guerra del Pacífico), also known by multiple other names, was a war between Chile and a Bolivian–Peruvian alliance from 1879 to 1884. Fought over Chilean claims on coastal Bolivian territory in the Atacama Desert, the war ended with victory for Chile, which gained a significant amount of resource-rich territory from Peru and Bolivia.

The direct cause of the war was a nitrate taxation dispute between Bolivia and Chile, with Peru being drawn in due to its secret alliance with Bolivia. Some historians have pointed to deeper origins of the war, such as the interest of Chile and Peru in the nitrate business, a long-standing rivalry between Chile and Peru for regional hegemony, as well as the political and economical disparities between the stability of Chile and the volatility of Peru and Bolivia.In February 1878, Bolivia increased taxes on the Chilean mining company Compañía de Salitres y Ferrocarril de Antofagasta [es] (CSFA), in violation of the Boundary Treaty of 1874 which established the border between both countries and prohibited tax increases for mining. Chile protested the violation of the treaty and requested international arbitration, but the Bolivian government, presided by Hilarión Daza, considered this an internal issue subject to the jurisdiction of the Bolivian courts. Chile insisted that the breach of the treaty would mean that the territorial borders denoted in it were no longer settled. Despite this, Hilarión Daza rescinded the license of the Chilean company, seized its assets and put it up for auction. On the day of the auction, 14 February 1879, Chile's armed forces occupied without resistance the Bolivian port city of Antofagasta, which was mostly inhabited by Chilean miners. War was declared between Bolivia and Chile on 1 March 1879, and between Chile and Peru on 5 April 1879.

View the full Wikipedia page for War of the Pacific
↑ Return to Menu

Nitrate in the context of Anaerobic respiration

Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2) in its electron transport chain.

In aerobic organisms, electrons are shuttled to an electron transport chain, and the final electron acceptor is oxygen. Molecular oxygen is an excellent electron acceptor. Anaerobes instead use less-oxidizing substances such as nitrate (NO
3
), fumarate (C
4
H
2
O
4
), sulfate (SO
4
), or elemental sulfur (S). These terminal electron acceptors have smaller reduction potentials than O2. Less energy per oxidized molecule is released. Therefore, anaerobic respiration is less efficient than aerobic.

View the full Wikipedia page for Anaerobic respiration
↑ Return to Menu

Nitrate in the context of Nitrification

Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms or entirely within one organism, as in comammox bacteria. The transformation of ammonia to nitrite is usually the rate limiting step of nitrification. Nitrification is an aerobic process performed by small groups of autotrophic bacteria and archaea.

View the full Wikipedia page for Nitrification
↑ Return to Menu

Nitrate in the context of Denitrification

Denitrification is a microbially facilitated process where nitrate (NO3) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitrification as a type of respiration that reduces oxidized forms of nitrogen in response to the oxidation of an electron donor such as organic matter. The preferred nitrogen electron acceptors in order of most to least thermodynamically favorable include nitrate (NO3), nitrite (NO2), nitric oxide (NO), nitrous oxide (N2O), finally resulting in the production of N2, completing the nitrogen cycle. Denitrifying microbes require a very low oxygen concentration of less than 10%, as well as organic C for energy. Since denitrification can remove NO3, reducing its leaching to groundwater, it can be strategically used to treat sewage or animal residues of high nitrogen content. Denitrification can leak N2O, which is an ozone-depleting substance and a greenhouse gas that can have a considerable influence on global warming.

The process is performed primarily by heterotrophic bacteria (such as Paracoccus denitrificans and various pseudomonads), although autotrophic denitrifiers have also been identified (e.g., Thiobacillus denitrificans). Denitrifiers are represented in all main phylogenetic groups. Generally, several species of bacteria are involved in the complete reduction of NO3 to N2, and more than one enzymatic pathway has been identified in the reduction process. The denitrification process does not only provide energy to the organism performing nitrate reduction to dinitrogen gas, but also some anaerobic ciliates can use denitrifying endosymbionts to gain energy similar to the use of mitochondria in oxygen respiring organisms.

View the full Wikipedia page for Denitrification
↑ Return to Menu

Nitrate in the context of Harmful algal bloom

A harmful algal bloom (HAB), or excessive algae growth, sometimes called a red tide in marine environments, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, water deoxygenation, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive.

It is sometimes unclear what causes specific HABs as their occurrence in some locations appears to be entirely natural, while in others they appear to be a result of human activities. In certain locations there are links to particular drivers like nutrients, but HABs have also been occurring since before humans started to affect the environment. HABs are induced by eutrophication, which is an overabundance of nutrients in the water. The two most common nutrients are fixed nitrogen (nitrates, ammonia, and urea) and phosphate. The excess nutrients are emitted by agriculture, industrial pollution, excessive fertilizer use in urban/suburban areas, and associated urban runoff. Higher water temperature and low circulation also contribute.

View the full Wikipedia page for Harmful algal bloom
↑ Return to Menu

Nitrate in the context of Curing (food preservation)

Curing is any of various food preservation and flavoring processes of foods such as meat, fish and vegetables, by the addition of salt, with the aim of drawing moisture out of the food by the process of osmosis. Because curing increases the solute concentration in the food and hence decreases its water potential, the food becomes inhospitable for the microbe growth that causes food spoilage. Curing can be traced back to antiquity, and was the primary method of preserving meat and fish until the late 19th century. Dehydration was the earliest form of food curing. Many curing processes also involve smoking, spicing, cooking, or the addition of combinations of sugar, nitrate, and nitrite.

Meat preservation in general (of meat from livestock, game, and poultry) comprises the set of all treatment processes for preserving the properties, taste, texture, and color of raw, partially cooked, or cooked meats while keeping them edible and safe to consume. Curing has been the dominant method of meat preservation for thousands of years, although modern developments like refrigeration and synthetic preservatives have begun to complement and supplant it.

View the full Wikipedia page for Curing (food preservation)
↑ Return to Menu

Nitrate in the context of Alkali metal nitrate

Alkali metal nitrates are chemical compounds consisting of an alkali metal (lithium, sodium, potassium, rubidium and caesium) and the nitrate ion. Only two are of major commercial value, the sodium and potassium salts. They are white, water-soluble salts with melting points ranging from 255 °C (LiNO
3
) to 414 °C (CsNO
3
) on a relatively narrow span of 159 °C

The melting point of the alkali metal nitrates tends to increase from 255 °C to 414 °C (with an anomaly for rubidium being not properly aligned in the series) as the atomic mass and the ionic radius (naked cation) of the alkaline metal increases, going down in the column. Similarly, but not presented here in the table, the solubility of these salts in water also decreases with the atomic mass of the metal.

View the full Wikipedia page for Alkali metal nitrate
↑ Return to Menu

Nitrate in the context of Nitration

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group (−NO2) into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters (−ONO2) between alcohols and nitric acid (as occurs in the synthesis of nitroglycerin). The difference between the resulting molecular structures of nitro compounds and nitrates (NO3) is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom (typically carbon or another nitrogen atom), whereas in nitrate esters (also called organic nitrates), the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom (nitrito group).

There are many major industrial applications of nitration in the strict sense; the most important by volume are for the production of nitroaromatic compounds such as nitrobenzene. The technology is long-standing and mature.

View the full Wikipedia page for Nitration
↑ Return to Menu

Nitrate in the context of Primary nutritional groups

Primary nutritional groups are groups of organisms, divided according to the sources of energy, carbon, and electrons needed for living, growth and reproduction. The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin; the source of electron can be organic or inorganic.

The terms aerobic respiration, anaerobic respiration and fermentation (substrate-level phosphorylation) do not refer to primary nutritional groups, but simply reflect the different use of possible electron acceptors in particular organisms, such as O2 in aerobic respiration, nitrate (NO
3
) or sulfate (SO
4
) in anaerobic respiration, or various metabolic intermediates in fermentation.

View the full Wikipedia page for Primary nutritional groups
↑ Return to Menu

Nitrate in the context of Reactive nitrogen

Reactive nitrogen ("Nr"), also known as fixed nitrogen, refers to all forms of nitrogen present in the environment except for molecular nitrogen (N
2
). While nitrogen is an essential element for life on Earth, molecular nitrogen is comparatively unreactive, and must be converted to other chemical forms via nitrogen fixation before it can be used for growth. Common Nr species include nitrogen oxides (NO
x
), ammonia (NH
3
), nitrous oxide (N
2
O
), as well as the anion nitrate (NO
3
).

Biologically, nitrogen is "fixed" mainly by the microbes (eg., Bacteria and Archaea) of the soil that fix N
2
into mainly NH
3
but also other species. Legumes, a type of plant in the Fabacae family, are symbionts to some of these microbes that fix N
2
. NH
3
is a building block to Amino acids and proteins amongst other things essential for life. However, just over half of all reactive nitrogen entering the biosphere is attributable to anthropogenic activity such as industrial fertilizer production. While reactive nitrogen is eventually converted back into molecular nitrogen via denitrification, an excess of reactive nitrogen can lead to problems such as eutrophication in marine ecosystems.

View the full Wikipedia page for Reactive nitrogen
↑ Return to Menu