Neutrons in the context of Mass


Neutrons in the context of Mass

Neutrons Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Neutrons in the context of "Mass"


⭐ Core Definition: Neutrons

The neutron is a subatomic particle, symbol n or n
, that has no electric charge, and a mass slightly greater than that of a proton. The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the first self-sustaining nuclear reactor (Chicago Pile-1, 1942), and the first nuclear weapon (Trinity, 1945).

Neutrons are found, together with a similar number of protons in the nuclei of atoms. Atoms of a chemical element that differ only in neutron number are called isotopes. Free neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes. Neutron stars, formed from massive collapsing stars, consist of neutrons at the density of atomic nuclei but a total mass more than the Sun.

↓ Menu
HINT:

In this Dossier

Neutrons in the context of Particle physics

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics.

The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

View the full Wikipedia page for Particle physics
↑ Return to Menu

Neutrons in the context of Carbon-12

Carbon-12 (C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 is of particular importance in its use as the standard from which atomic masses of all nuclides are measured, thus, its atomic mass is exactly 12 daltons by definition. Carbon-12 is composed of 6 protons, 6 neutrons, and 6 electrons.

See carbon-13 for means of separating the two isotopes, thereby enriching both.

View the full Wikipedia page for Carbon-12
↑ Return to Menu

Neutrons in the context of Carbon-13

Carbon-13 (C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. It constitutes about 1.07% of natural carbon and is one of the so-called environmental isotopes.

View the full Wikipedia page for Carbon-13
↑ Return to Menu

Neutrons in the context of Carbon-14

Carbon-14, C-14, C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by Martin Kamen and Sam Ruben at the University of California Radiation Laboratory in Berkeley, California. Its existence had been suggested by Franz Kurie in 1934.

There are three naturally occurring isotopes of carbon on Earth: carbon-12 (C), which makes up 99% of all carbon on Earth; carbon-13 (C), which makes up 1%; and carbon-14 (C), which occurs in trace amounts, making up about 1.2 atoms per 10 atoms of carbon in the atmosphere. C and C are both stable; C is unstable, with half-life 5700±30 years, decaying into nitrogen-14 (
N
) through beta decay. Pure carbon-14 would have a specific activity of 62.4 mCi/mmol (2.31 GBq/mmol), or 164.9 GBq/g. The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a cosmogenic nuclide. Open-air nuclear testing between 1955 and 1980 contributed to this pool, however.

View the full Wikipedia page for Carbon-14
↑ Return to Menu

Neutrons in the context of Nuclear transmutation

Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.

A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus) or by radioactive decay, where no outside cause is needed.

View the full Wikipedia page for Nuclear transmutation
↑ Return to Menu

Neutrons in the context of Subatomic scale

The subatomic scale is the domain of physical size that encompasses objects smaller than an atom. It is the scale at which the atomic constituents, such as the nucleus containing protons and neutrons, and the electrons in their orbitals, become apparent.

The subatomic scale includes the many thousands of times smaller subnuclear scale, which is the scale of physical size at which constituents of the protons and neutrons—particularly quarks—become apparent.

View the full Wikipedia page for Subatomic scale
↑ Return to Menu

Neutrons in the context of Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. High-resolution nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI). The original application of NMR to condensed matter physics is nowadays mostly devoted to strongly correlated electron systems. It reveals large many-body couplings by fast broadband detection and should not be confused with solid state NMR, which aims at removing the effect of the same couplings by Magic Angle Spinning techniques.

The most commonly used nuclei are
H
and
C
, although isotopes of many other elements, such as
F
,
P
, and
Si
, can be studied by high-field NMR spectroscopy as well. In order to interact with the magnetic field in the spectrometer, the nucleus must have an intrinsic angular momentum and nuclear magnetic dipole moment. This occurs when an isotope has a nonzero nuclear spin, meaning an odd number of protons and/or neutrons (see Isotope). Nuclides with even numbers of both have a total spin of zero and are therefore not NMR-active.

View the full Wikipedia page for Nuclear magnetic resonance
↑ Return to Menu

Neutrons in the context of Fritz Strassmann

Friedrich Wilhelm Strassmann (German: [fʁɪt͡s ˈʃtʁasˌman] ; 22 February 1902 – 22 April 1980) was a German chemist who, with Otto Hahn in December 1938, identified the element barium as a product of the bombardment of uranium with neutrons. Their observation was the key piece of evidence necessary to identify the previously unknown phenomenon of nuclear fission, as was subsequently recognized and published by Lise Meitner and Robert Frisch.

In their second publication on nuclear fission in February 1939, Strassmann and Hahn predicted the existence and liberation of additional neutrons during the fission process, opening up the possibility of a nuclear chain reaction.

View the full Wikipedia page for Fritz Strassmann
↑ Return to Menu

Neutrons in the context of Beamline

In accelerator physics, a beamline refers to the trajectory of the beam of particles, including the overall construction of the path segment (guide tubes, diagnostic devices) along a specific path of an accelerator facility. This part is either

Beamlines usually end in experimental stations that utilize particle beams or synchrotron light obtained from a synchrotron, or neutrons from a spallation source or research reactor. Beamlines are used in experiments in particle physics, materials science, life science, chemistry, and molecular biology, but can also be used for irradiation tests or to produce isotopes.

View the full Wikipedia page for Beamline
↑ Return to Menu

Neutrons in the context of Beer–Lambert law

The Beer–Bouguer–Lambert (BBL) extinction law is an empirical relationship describing the attenuation in intensity of a radiation beam passing through a macroscopically homogenous medium with which it interacts. Formally, it states that the intensity of radiation decays exponentially in the absorbance of the medium, and that said absorbance is proportional to the length of beam passing through the medium, the concentration of interacting matter along that path, and a constant representing said matter's propensity to interact.

The extinction law's primary application is in chemical analysis, where it underlies the Beer–Lambert law, commonly called Beer's law. Beer's law states that a beam of visible light passing through a chemical solution of fixed geometry experiences absorption proportional to the solute concentration. Other applications appear in physical optics, where it quantifies astronomical extinction and the absorption of photons, neutrons, or rarefied gases.

View the full Wikipedia page for Beer–Lambert law
↑ Return to Menu

Neutrons in the context of Critical mass (nuclear)

In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fission cross-section), density, shape, enrichment, purity, temperature, and surroundings. It is an important parameter of a nuclear reactor core or nuclear weapon. The concept is important in nuclear weapon design.

Critical size is the minimum size of the fissile material needed for a sustained nuclear chain reaction in a particular setup. If the size of the reactor core is less than a certain minimum, too many fission neutrons escape through its surface and the chain reaction is not sustained. A perfect sphere, which has the lowest surface-area-to-volume ratio, gives the minimal critical size.

View the full Wikipedia page for Critical mass (nuclear)
↑ Return to Menu