High energy physics in the context of "Neutrons"

Play Trivia Questions online!

or

Skip to study material about High energy physics in the context of "Neutrons"

Ad spacer

⭐ Core Definition: High energy physics

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics.

The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

High energy physics in the context of Lepton

In particle physics, a lepton is an elementary particle of half-integer spin (spin 1/2) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

There are six types of leptons, known as flavours, grouped in three generations. The first-generation leptons, also called electronic leptons, comprise the electron (e
) and the electron neutrino (ν
e
); the second are the muonic leptons, comprising the muon (μ
) and the muon neutrino (ν
μ
); and the third are the tauonic leptons, comprising the tau (τ
) and the tau neutrino (ν
τ
). Electrons have the least mass of all the charged leptons. The heavier muons and taus will rapidly change into electrons and neutrinos through a process of particle decay: the transformation from a higher mass state to a lower mass state. Thus electrons are stable and the most common charged lepton in the universe, whereas muons and taus can only be produced in high-energy collisions (such as those involving cosmic rays and those carried out in particle accelerators).

↑ Return to Menu

High energy physics in the context of Length scale

In physics, length scale is a particular length or distance determined with the precision of at most a few orders of magnitude. The concept of length scale is particularly important because physical phenomena of different length scales are said to decouple, i.e. they can be separated and studied independently. In other words, the decoupling of different length scales makes it possible to have a self-consistent theory that only describes the relevant length scales for a given problem. Scientific reductionism says that the physical laws on the shortest length scales can be used to derive the effective description at larger length scales. The idea that one can derive descriptions of physics at different length scales from one another can be quantified with the renormalization group.

In quantum mechanics the length scale of a given phenomenon is related to its de Broglie wavelength = ħ/p, where ħ is the reduced Planck constant and p is the momentum that is being probed. In relativistic mechanics time and length scales are related by the speed of light. In relativistic quantum mechanics or relativistic quantum field theory, length scales are related to momentum, time and energy scales through the Planck constant and the speed of light. Often in high energy physics natural units are used where length, time, energy and momentum scales are described in the same units (usually with units of energy such as GeV).

↑ Return to Menu

High energy physics in the context of Units of energy

Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units

An energy unit that is used in atomic physics, particle physics, and high energy physics is the electronvolt (eV). One eV is equivalent to 1.602176634×10 J.

↑ Return to Menu

High energy physics in the context of Vector meson

In high energy physics, a vector meson is a meson with total spin 1 and odd parity (usually noted as J = 1). Vector mesons have been seen in experiments since the 1960s, and are well known for their spectroscopic pattern of masses.

The vector mesons contrast with the pseudovector mesons, which also have a total spin 1 but instead have even parity. The vector and pseudovector mesons are also dissimilar in that the spectroscopy of vector mesons tends to show nearly pure states of constituent quark flavors, whereas pseudovector mesons and scalar mesons tend to be expressed as composites of mixed states.

↑ Return to Menu