Near-Earth object in the context of "Lunar distance"

Play Trivia Questions online!

or

Skip to study material about Near-Earth object in the context of "Lunar distance"

Ad spacer

⭐ Core Definition: Near-Earth object

A near-Earth object (NEO) is any small Solar System body orbiting the Sun whose closest approach to the Sun (perihelion) is less than 1.3 times the Earth–Sun distance (astronomical unit, AU). This definition applies to the object's orbit around the Sun, rather than its current position, thus an object with such an orbit is considered an NEO even at times when it is far from making a close approach of Earth. If an NEO's orbit crosses the Earth's orbit, and the object is larger than 140 meters (460 ft) across, it is considered a potentially hazardous object (PHO). Most known PHOs and NEOs are asteroids, but about a third of a percent are comets.

There are over 37,000 known near-Earth asteroids (NEAs) and over 120 known short-period near-Earth comets (NECs). A number of solar-orbiting meteoroids were large enough to be tracked in space before striking Earth. It is now widely accepted that collisions in the past have had a significant role in shaping the geological and biological history of Earth. Asteroids as small as 20 metres (66 ft) in diameter can cause significant damage to the local environment and human populations. Larger asteroids penetrate the atmosphere to the surface of the Earth, producing craters if they impact a continent or tsunamis if they impact the sea. Interest in NEOs has increased since the 1980s because of greater awareness of this risk. Asteroid impact avoidance by deflection is possible in principle, and methods of mitigation are being researched.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Near-Earth object in the context of Lunar distance

The instantaneous Earth–Moon distance, or distance to the Moon, is the distance from the center of Earth to the center of the Moon. In contrast, the Lunar distance (LD or ), or Earth–Moon characteristic distance, is a unit of measure in astronomy. More technically, it is the semi-major axis of the geocentric lunar orbit. The average lunar distance is approximately 385,000 km (239,000 mi), or 1.3 light-seconds. It is roughly 30 times Earth's diameter and a non-stop plane flight traveling that distance would take more than two weeks. Around 389 lunar distances make up an astronomical unit (roughly the distance from Earth to the Sun).

Lunar distance is commonly used to express the distance to near-Earth object encounters. Lunar semi-major axis is an important astronomical datum. It has implications for testing gravitational theories such as general relativity and for refining other astronomical values, such as the mass, radius, and rotation of Earth. The measurement is also useful in measuring the lunar radius, as well as the distance to the Sun.

↓ Explore More Topics
In this Dossier

Near-Earth object in the context of Asteroid belt

The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids or minor planets. The identified objects are of many sizes, but much smaller than planets, and, on average, are about one million kilometers (or six hundred thousand miles) apart. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System.

The asteroid belt is the smallest and innermost circumstellar disc in the Solar System. Classes of small Solar System bodies in other regions are the near-Earth objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids, and the Oort cloud objects. About 60% of the main belt mass is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is estimated to be 3% that of the Moon.

↑ Return to Menu

Near-Earth object in the context of Minor planet

According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term minor planet, but that year's meeting reclassified minor planets and comets into dwarf planets and small Solar System bodies (SSSBs). In contrast to the eight official planets of the Solar System, all minor planets fail to clear their orbital neighborhood.

Minor planets include asteroids (near-Earth objects, Earth trojans, Mars trojans, Mars-crossers, main-belt asteroids and Jupiter trojans), as well as distant minor planets (Uranus trojans, Neptune trojans, centaurs and trans-Neptunian objects), most of which reside in the Kuiper belt and the scattered disc. As of October 2025, there are 1,472,966 known objects, divided into 875,150 numbered, with only one of them recognized as a dwarf planet (secured discoveries) and 597,816 unnumbered minor planets, with only five of those officially recognized as a dwarf planet.

↑ Return to Menu

Near-Earth object in the context of Wide-field Infrared Survey Explorer

Wide-field Infrared Survey Explorer (WISE, observatory code C51, Explorer 92 and MIDEX-6) was a NASA infrared astronomy space telescope in the Explorers Program launched in December 2009. WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y-type brown dwarf and Earth trojan asteroid.WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a 40 cm (16 in) diameter infrared telescope in Earth orbit.

After its solid hydrogen coolant depleted, it was placed in hibernation mode in February 2011.In 2013, NASA reactivated the WISE telescope to search for near-Earth objects (NEO), such as comets and asteroids, that could collide with Earth.

↑ Return to Menu

Near-Earth object in the context of Asteroid impact avoidance

Asteroid impact avoidance encompasses the methods by which near-Earth objects (NEO) on a potential collision course with Earth could be diverted, preventing destructive impact events. An impact by a sufficiently large asteroid or other NEOs would cause, depending on its impact location, massive tsunamis or multiple firestorms, and an impact winter caused by the sunlight-blocking effect of large quantities of pulverized rock dust and other debris placed into the stratosphere. A collision 66 million years ago between the Earth and an object approximately 10 kilometers (6 miles) wide is thought to have produced the Chicxulub crater and triggered the Cretaceous–Paleogene extinction event that is understood by the scientific community to have caused the extinction of all non-avian dinosaurs.

While the chances of a major collision are low in the near term, it is a near-certainty that one will happen eventually unless defensive measures are taken. Astronomical events—such as the Shoemaker-Levy 9 impacts on Jupiter and the 2013 Chelyabinsk meteor, along with the growing number of near-Earth objects discovered and catalogued on the Sentry Risk Table—have drawn renewed attention to such threats. The popularity of the 2021 movie Don't Look Up helped to raise awareness of the possibility of avoiding NEOs. Awareness of the threat has grown rapidly during the past few decades, but much more needs to be accomplished before the human population can feel adequately protected from a potentially catastrophic asteroid impact.

↑ Return to Menu

Near-Earth object in the context of List of Solar System objects by size

This article includes a list of the most massive known objects of the Solar System and partial lists of smaller objects by observed mean radius. These lists can be sorted according to an object's radius and mass and, for the most massive objects, volume, density, and surface gravity, if these values are available.

These lists contain the Sun, the planets, dwarf planets, many of the larger small Solar System bodies (which includes the asteroids), all named natural satellites, and a number of smaller objects of historical or scientific interest, such as comets and near-Earth objects.

↑ Return to Menu

Near-Earth object in the context of OSIRIS-REx

OSIRIS-REx was a NASA asteroid-study and sample-return mission that visited and collected samples from 101955 Bennu, a carbonaceous near-Earth asteroid. The material, returned in September 2023, is expected to enable scientists to learn more about the formation and evolution of the Solar System, its initial stages of planet formation, and the source of organic compounds that led to the formation of life on Earth. Following the completion of the primary OSIRIS-REx (Regolith Explorer) mission, the spacecraft is planned to conduct a flyby of asteroid 99942 Apophis, renamed as OSIRIS-APEX (Apophis Explorer).

OSIRIS-REx was launched on September 8, 2016, flew past Earth on 22 September 2017 and rendezvoused with Bennu on 3 December 2018. It spent the next two years analyzing the surface to find a suitable site from which to extract a sample. On 20 October 2020, OSIRIS-REx touched down on Bennu and successfully collected a sample. OSIRIS-REx left Bennu on 10 May 2021 and returned its sample to Earth on 24 September 2023, subsequently starting its extended mission to study 99942 Apophis, where it will arrive in April 2029.

↑ Return to Menu

Near-Earth object in the context of Mars-crossing asteroid

A Mars-crossing asteroid (MCA, also Mars-crosser, MC) is an asteroid whose orbit crosses that of Mars. Some Mars-crossers numbered below 100000 are listed here. They include the two numbered Mars trojans 5261 Eureka and (101429) 1998 VF31.

Many databases, for instance the JPL Small-Body Database (JPL SBDB), only list asteroids with a perihelion greater than 1.3 AU as Mars-crossers. An asteroid with a perihelion less than this is classed as a near-Earth object even though it is crossing the orbit of Mars as well as crossing (or coming near to) that of Earth. Nevertheless, these objects are listed on this page. A grazer is an object with a perihelion below the aphelion of Mars (1.67 AU) but above the Martian perihelion (1.38 AU). The JPL SBDB lists 13,500 Mars-crossing asteroids. Only 18 MCAs are brighter than absolute magnitude (H) 12.5, which typically makes these asteroids with H<12.5 more than 13 km in diameter depending on the albedo. The smallest known MCAs have an absolute magnitude (H) of around 24 and are typically less than 100 meters in diameter. There are over 21,600 known Mars-crossers of which only 5751 have received a MPC number.

↑ Return to Menu