National Aeronautics and Space Administration in the context of Apollo program


National Aeronautics and Space Administration in the context of Apollo program

National Aeronautics and Space Administration Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about National Aeronautics and Space Administration in the context of "Apollo program"


⭐ Core Definition: National Aeronautics and Space Administration

The National Aeronautics and Space Administration (NASA /ˈnæsə/) is an independent agency of the US federal government responsible for the United States' civil space program and for research in aeronautics and space exploration. Headquartered in Washington, D.C., NASA operates ten field centers across the United States and is organized into mission directorates for Science, Space Operations, Exploration Systems Development, Space Technology, Aeronautics Research, and Mission Support. Established in 1958, NASA succeeded the National Advisory Committee for Aeronautics (NACA) to give the American space development effort a distinct civilian orientation, emphasizing peaceful applications in space science. It has since led most of America's space exploration programs, including Project Mercury, Project Gemini, the 1968–1972 Apollo program missions, the Skylab space station, and the Space Shuttle.

The agency maintains major ground and communications infrastructure including the Deep Space Network and the Near Space Network. NASA's science division is focused on better understanding Earth through the Earth Observing System; advancing heliophysics through the efforts of the Science Mission Directorate's Heliophysics Research Program; exploring bodies throughout the Solar System with advanced robotic spacecraft such as New Horizons and planetary rovers such as Perseverance; and researching astrophysics topics, such as the Big Bang, through the James Webb Space Telescope, the four Great Observatories (including the Hubble Space Telescope), and associated programs. The Launch Services Program oversees launch operations for its uncrewed launches.

↓ Menu
HINT:

In this Dossier

National Aeronautics and Space Administration in the context of National Snow and Ice Data Center

The National Snow and Ice Data Center (NSIDC) is a United States information and referral center in support of polar and cryospheric research. NSIDC archives and distributes digital and analog snow and ice data and also maintains information about snow cover, avalanches, glaciers, ice sheets, freshwater ice, sea ice, ground ice, permafrost, atmospheric ice, paleoglaciology, and ice cores.

NSIDC is part of the University of Colorado Boulder Cooperative Institute for Research in Environmental Sciences (CIRES), and is affiliated with the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information through a cooperative agreement. NSIDC serves as one of twelve Distributed Active Archive Centers funded by the National Aeronautics and Space Administration to archive and distribute data from NASA's past and current satellites and field measurement programs. NSIDC also supports the National Science Foundation through the Exchange For Local Observations and Knowledge of the Arctic (ELOKA) and other scientific research grants. NSIDC is also a member of the ICSU World Data System. sujit Serreze is the director of NSIDC.

View the full Wikipedia page for National Snow and Ice Data Center
↑ Return to Menu

National Aeronautics and Space Administration in the context of Space Shuttle program

The Space Shuttle program was the fourth human spaceflight program carried out by the U.S. National Aeronautics and Space Administration (NASA), which accomplished routine transportation for Earth-to-orbit crew and cargo from 1981 to 2011. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development, as a proposed nuclear shuttle in the plan was cancelled in 1972. It flew 135 missions and carried 355 astronauts from 16 countries, many on multiple trips.

The Space Shuttle, composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank, carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would reenter the Earth's atmosphere and land like a glider at either the Kennedy Space Center or Edwards Air Force Base.

View the full Wikipedia page for Space Shuttle program
↑ Return to Menu

National Aeronautics and Space Administration in the context of Space Shuttle

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was the Space Transportation System (STS), taken from the 1969 plan led by U.S. vice president Spiro Agnew for a system of reusable spacecraft where it was the only item funded for development.

The first (STS-1) of four orbital test flights occurred in 1981, leading to operational flights (STS-5) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on a total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida. Operational missions launched numerous satellites, interplanetary probes, and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle-Mir program with Russia, and participated in the construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time was 1,323 days.

View the full Wikipedia page for Space Shuttle
↑ Return to Menu

National Aeronautics and Space Administration in the context of Artemis program

The Artemis program is a Moon exploration program led by the United States' National Aeronautics and Space Administration (NASA), formally established in 2017 via Space Policy Directive 1. The program is intended to reestablish a human presence on the Moon for the first time since the Apollo 17 mission in 1972, with a stated long-term goal of establishing a permanent base on the Moon. This will facilitate human missions to Mars.

Two principal elements of the Artemis program are derived from the now-cancelled Constellation program: the Orion spacecraft (with the ESM instead of a US-built service module) and the Space Launch System's (SLS) solid rocket boosters (originally developed for the Ares V). Other elements of the program, such as the Lunar Gateway space station and the Human Landing System, are in development by government space agencies and private spaceflight companies, collaborations bound by the Artemis Accords and governmental contracts.

View the full Wikipedia page for Artemis program
↑ Return to Menu

National Aeronautics and Space Administration in the context of Landsat

The Landsat program is the longest-running enterprise that has acquired satellite imagery of Earth. It is a joint NASA / USGS program. On 23 July 1972, the Earth Resources Technology Satellite was launched. This was eventually renamed to Landsat 1 in 1975. The most recent, Landsat 9, was launched on 27 September 2021.

The instruments on the Landsat satellites have acquired millions of images. The images, archived in the United States and at Landsat receiving stations around the world, are a unique resource for global change research and applications in agriculture, cartography, geology, forestry, regional planning, surveillance, and education, and can be viewed through the U.S. Geological Survey (USGS) "EarthExplorer" website. Landsat 7 data has eight spectral bands with spatial resolutions ranging from 15 to 60 m (49 to 197 ft); the temporal resolution is 16 days. Landsat images are usually divided into scenes for easy downloading. Each Landsat scene is about 115 miles long and 115 miles wide (or 100 nautical miles long and 100 nautical miles wide, or 185 kilometers long and 185 kilometers wide).

View the full Wikipedia page for Landsat
↑ Return to Menu

National Aeronautics and Space Administration in the context of Exploration of Jupiter

The exploration of Jupiter has been conducted via close observations by automated spacecraft. It began with the arrival of Pioneer 10 into the Jovian system in 1973, and, as of 2024, has continued with eight further spacecraft missions in the vicinity of Jupiter and two more en route. All but one of these missions were undertaken by the National Aeronautics and Space Administration (NASA), and all but four were flybys taking detailed observations without landing or entering orbit. These probes make Jupiter the most visited of the Solar System's outer planets as all missions to the outer Solar System have used Jupiter flybys. On July 5, 2016, spacecraft Juno arrived and entered the planet's orbit—the second craft ever to do so. Sending a craft to Jupiter is difficult due to large fuel requirements and the effects of the planet's harsh radiation environment.

The first spacecraft to visit Jupiter was Pioneer 10 in 1973, followed a year later by Pioneer 11. Aside from taking the first close-up pictures of the planet, the probes discovered its magnetosphere and its largely fluid interior. The Voyager 1 and Voyager 2 probes visited the planet in 1979, and studied its moons and the ring system, discovering the volcanic activity of Io and the presence of water ice on the surface of Europa. Ulysses, intended to observe the Sun's poles, further studied Jupiter's magnetosphere in 1992 and then again in 2004. The Saturn-bound Cassini probe approached the planet in 2000 and took very detailed images of its atmosphere. The Pluto-bound New Horizons spacecraft passed by Jupiter in 2007 and made improved measurements of its and its satellites' parameters.

View the full Wikipedia page for Exploration of Jupiter
↑ Return to Menu

National Aeronautics and Space Administration in the context of NASA astronaut

The NASA Astronaut Corps is a unit of the United States National Aeronautics and Space Administration (NASA) that selects, trains, and provides astronauts as crew members for U.S. and international space missions. It is based at Johnson Space Center in Houston, Texas.

View the full Wikipedia page for NASA astronaut
↑ Return to Menu

National Aeronautics and Space Administration in the context of North American X-15

The North American X-15 is a hypersonic rocket-powered aircraft which was operated by the United States Air Force and the National Aeronautics and Space Administration (NASA) as part of the X-plane series of experimental aircraft. The X-15 set speed and altitude records in the 1960s, crossing the edge of outer space and returning with valuable data used in aircraft and spacecraft design. The X-15's highest speed, 4,520 miles per hour (7,274 km/h; 2,021 m/s), was achieved on 3 October 1967, when William J. Knight flew at Mach 6.7 at an altitude of 102,100 feet (31,120 m), or 19.34 miles. This set the official world record for the highest speed ever recorded by a crewed, powered aircraft, which remains unbroken.

During the X-15 program, 12 pilots flew a combined 199 flights. Of these, 8 pilots flew a combined 13 flights which met the Air Force spaceflight criterion by exceeding the altitude of 50 miles (80 km), thus qualifying these pilots as being astronauts; of those 13 flights, 2 (flown by the same civilian pilot) met the FAI definition (100 kilometres (62 mi)) of outer space. The 5 Air Force pilots qualified for military astronaut wings immediately, while the 3 civilian pilots were eventually awarded NASA astronaut wings in 2005, 35 years after the last X-15 flight.

View the full Wikipedia page for North American X-15
↑ Return to Menu

National Aeronautics and Space Administration in the context of Discovery Program

The Discovery Program is a series of Solar System exploration missions funded by the U.S. National Aeronautics and Space Administration (NASA) through its Planetary Missions Program Office. The cost of each mission is capped at a lower level than missions from NASA's New Frontiers or Flagship Programs. As a result, Discovery missions tend to be more focused on a specific scientific goal rather than serving a general purpose.

The Discovery Program was founded in 1990. Existing NASA programs had specified mission targets and objectives in advance, then sought bidders to construct and operate them. In contrast, Discovery missions are solicited through a call for proposals on any science topic and assessed through peer review. Selected missions are led by a scientist called the principal investigator (PI) and may include contributions from industry, universities or government laboratories.

View the full Wikipedia page for Discovery Program
↑ Return to Menu

National Aeronautics and Space Administration in the context of Human mission to Mars

The idea of sending humans to Mars has been the subject of aerospace engineering and scientific studies since the late 1940s as part of the broader exploration of Mars. Long-term proposals have included sending settlers and terraforming the planet. Currently, only robotic landers, rovers and a helicopter have been on Mars. The farthest humans have been beyond Earth is the Moon, under the U.S. National Aeronautics and Space Administration (NASA) Apollo program which ended in 1972.

Conceptual proposals for missions that would involve human spaceflight started in the early 1950s, with planned missions typically expected to take place between 10 and 30 years after they were drafted. The list of crewed Mars mission plans shows the proposals put forth by multiple organizations and space agencies in this field of space exploration. These plans have varied—from scientific expeditions, in which a small group (between two and eight astronauts) would visit Mars for a period of a few weeks or more, to a continuous presence (e.g. through research stations, colonization, or other continuous habitation). Some have also considered exploring the Martian moons Phobos and Deimos. By 2020, virtual visits to Mars, using haptic technology, had also been proposed.

View the full Wikipedia page for Human mission to Mars
↑ Return to Menu

National Aeronautics and Space Administration in the context of Artemis II

Artemis II is a planned lunar spaceflight mission under the Artemis program, led by NASA. It is intended to be the second flight of the Space Launch System (SLS), and is both the first crewed mission of the Orion spacecraft and the first crewed mission to the vicinity of the Moon since Apollo 17 in 1972. Launch is scheduled for no earlier than February 5, 2026.

The 10-day mission will carry NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with Jeremy Hansen of the Canadian Space Agency, on a free-return trajectory around the Moon and back to Earth.

View the full Wikipedia page for Artemis II
↑ Return to Menu

National Aeronautics and Space Administration in the context of Spaceborne Imaging Radar

The Spaceborne Imaging Radar (SIR) – full name 'Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR)', is a synthetic aperture radar which flew on two separate shuttle missions. Once from the Space Shuttle Endeavour in April 1994 on (STS-59) and again in October 1994 on (STS-68). The radar was run by NASA's Space Radar Laboratory. SIR utilizes 3 radar frequencies: L band (24 cm wavelength), C band (6 cm) and X band (3 cm), allowing for study of geology, hydrology, ecology and oceanography. Comparing radar images to data collected by teams of people on the ground as well as aircraft and ships using simultaneous measurements of vegetation, soil moisture, sea state, snow and weather conditions during each flight. The imaging radar was able to take images anytime regardless of clouds cover. The Radar-C system was built and operated by NASA's Jet Propulsion Laboratory (JPL). The mission was a joint work of NASA with the German and Italian space agencies. Each of the week long mission scanned about 50 million square kilometers of the Earth's surface, (19.3 million square miles).

The SIR mission revealed hidden river channels in the Sahara Desert indicating significant climate change in the past. SIR was also used for volcano research by keeping researchers a safe distance from hazardous and often inaccessible areas. The radar was also used to generate detailed three dimensional mappings of the Earth's surface.

View the full Wikipedia page for Spaceborne Imaging Radar
↑ Return to Menu

National Aeronautics and Space Administration in the context of Svalbard Satellite Station

Svalbard Satellite Station (Norwegian: Svalbard satellittstasjon) or SvalSat is a satellite ground station located on Platåberget near Longyearbyen in Svalbard, Norway. Opened in 1997, it is operated by Kongsberg Satellite Services (KSAT), a joint venture between Kongsberg Defence & Aerospace and the Norwegian Space Centre (NSC). SvalSat and KSAT's Troll Satellite Station (TrollSat) in Antarctica are the only ground stations that can see a low altitude polar orbiting satellite (e.g., in Sun-synchronous orbit) on every revolution as the Earth rotates. As of 2021, the facility consists of 100 multi-mission and customer-dedicated antennas which operate in the C, L, S, X and K bands. The station provides ground services to more satellites than any other facility in the world.

Customers with their own installations include the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA) and the National Oceanic and Atmospheric Administration (NOAA). The station also reads and distributes data from the Japanese Hinode solar research satellite. The facility has seen a large increase in smaller customers after 2004, when the Svalbard Undersea Cable System started providing a fiber Internet connection. Concessions for downloading are only issued to civilian satellites, yet some data has been indirectly used by armed forces. There is a disagreement as to whether this constitutes a breach of the Svalbard Treaty.

View the full Wikipedia page for Svalbard Satellite Station
↑ Return to Menu

National Aeronautics and Space Administration in the context of RS-68

The RS-68 (Rocket System-68) was a liquid-fuel rocket engine that used liquid hydrogen (LH2) and liquid oxygen (LOX) as propellants in a gas-generator cycle. It was the largest hydrogen-fueled rocket engine ever flown.

Designed and manufactured in the United States by Rocketdyne (later Pratt & Whitney Rocketdyne and Aerojet Rocketdyne). Development started in the 1990s with the goal of producing a simpler, less costly, heavy-lift engine for the Delta IV launch system. Two versions of the engine have been produced: the original RS-68 and the improved RS-68A. A third version, the RS-68B, was planned for the National Aeronautics and Space Administration's (NASA) Ares V rocket before the cancellation of the rocket and the Constellation Program in 2010.

View the full Wikipedia page for RS-68
↑ Return to Menu

National Aeronautics and Space Administration in the context of Infrared Space Observatory

The Infrared Space Observatory (ISO) was a space telescope for infrared light designed and operated by the European Space Agency (ESA), in cooperation with ISAS (now part of JAXA) and NASA. The ISO was designed to study infrared light at wavelengths of 2.5 to 240 micrometres and operated from 1995 to 1998.

The 480.1-million satellite was launched on 17 November 1995 from the ELA-2 launch pad at the Guiana Space Centre near Kourou in French Guiana. The launch vehicle, an Ariane 44P rocket, placed ISO successfully into a highly elliptical geocentric orbit, completing one revolution around the Earth every 24 hours. The primary mirror of its Ritchey-Chrétien telescope measured 60 cm in diameter and was cooled to 1.7 kelvins by means of superfluid helium. The ISO satellite contained four instruments that allowed for imaging and photometry from 2.5 to 240 micrometres and spectroscopy from 2.5 to 196.8 micrometers.

View the full Wikipedia page for Infrared Space Observatory
↑ Return to Menu