Micrometres in the context of "Infrared Space Observatory"

Play Trivia Questions online!

or

Skip to study material about Micrometres in the context of "Infrared Space Observatory"

Ad spacer

⭐ Core Definition: Micrometres

The micrometre (Commonwealth English) or micrometer (American English) (SI symbol: μm) is a unit of length in the International System of Units (SI) equalling 10 metre (SI standard prefix "micro-" = 10); that is, one millionth of a metre (or one thousandth of a millimetre, 0.001 mm, or about 0.00004 inch). Also known as a micron.

The nearest smaller common SI unit is the nanometre, equivalent to one thousandth of a micrometre, one millionth of a millimetre or one billionth of a metre (10 or 0.000000001 m).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Micrometres in the context of Infrared Space Observatory

The Infrared Space Observatory (ISO) was a space telescope for infrared light designed and operated by the European Space Agency (ESA), in cooperation with ISAS (now part of JAXA) and NASA. The ISO was designed to study infrared light at wavelengths of 2.5 to 240 micrometres and operated from 1995 to 1998.

The 480.1-million satellite was launched on 17 November 1995 from the ELA-2 launch pad at the Guiana Space Centre near Kourou in French Guiana. The launch vehicle, an Ariane 44P rocket, placed ISO successfully into a highly elliptical geocentric orbit, completing one revolution around the Earth every 24 hours. The primary mirror of its Ritchey-Chrétien telescope measured 60 cm in diameter and was cooled to 1.7 kelvins by means of superfluid helium. The ISO satellite contained four instruments that allowed for imaging and photometry from 2.5 to 240 micrometres and spectroscopy from 2.5 to 196.8 micrometers.

↓ Explore More Topics
In this Dossier

Micrometres in the context of Ciliate

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group (although the peculiar Suctoria only have them for part of their life cycle) and are variously used in swimming, crawling, attachment, feeding, and sensation.

Ciliates are an important group of protists, common almost anywhere there is water—in lakes, ponds, oceans, rivers, and soils, including anoxic and oxygen-depleted habitats. About 4,500 unique free-living species have been described, and the potential number of extant species is estimated at 27,000–40,000. Included in this number are many ectosymbiotic and endosymbiotic species, as well as some obligate and opportunistic parasites. Ciliate species range in size from as little as 10 μm in some colpodeans to as much as 4 mm in length in some geleiids, and include some of the most morphologically complex protozoans.

↑ Return to Menu

Micrometres in the context of J band (infrared)

In infrared astronomy, the J band refers to an atmospheric transmission window (1.1 to 1.4 μm) centred on 1.25 micrometres (in the near-infrared).

Betelgeuse is the brightest near-IR source in the sky with a J band magnitude of −2.99. The next brightest stars in the J band are Antares (−2.7), R Doradus (−2.6), Arcturus (−2.2), and Aldebaran (−2.1). In the J band Sirius is the 9th brightest star.

↑ Return to Menu

Micrometres in the context of H band (infrared)

In infrared astronomy, the H band refers to an atmospheric transmission window centred on 1.65 micrometres with a Full width at half maximum of 0.35 micrometres (in the near-infrared).

Save for a limited amount of absorption by water vapor, Earth's atmosphere is highly translucent at the wavelengths covered by the H band. The window is also notably less likely to be contaminated by infrared excess than other bands.

↑ Return to Menu

Micrometres in the context of Clostridium tetani

Clostridium tetani is a common soil bacterium and the causative agent of tetanus. Vegetative cells of Clostridium tetani are usually rod-shaped and up to 2.5 μm long, but they become enlarged and tennis racket- or drumstick-shaped when forming spores. C. tetani spores are extremely hardy and can be found globally in soil or in the gastrointestinal tract of animals. If inoculated into a wound, C. tetani can grow and produce a potent toxin, tetanospasmin, which interferes with motor neurons, causing tetanus. The toxin's action can be prevented with tetanus toxoid vaccines, which are often administered to children worldwide.

↑ Return to Menu