Mollusks in the context of "Symbiodinium"

Play Trivia Questions online!

or

Skip to study material about Mollusks in the context of "Symbiodinium"

Ad spacer

⭐ Core Definition: Mollusks

Mollusca is a phylum of protostomic invertebrate animals, whose members are known as molluscs or mollusks (/ˈmɒləsks/). Around 76,000 extant species of molluscs are recognized, making it the second-largest animal phylum after Arthropoda. The number of additional fossil species is estimated between 60,000 and 100,000, and the proportion of undescribed species is very high. Many taxa remain poorly studied.

Molluscs are the largest marine phylum, comprising about 23% of all the named marine organisms. They are highly diverse, not just in size and anatomical structure, but also in behaviour and habitat, as numerous groups are freshwater and even terrestrial species. The phylum is typically divided into 7 or 8 taxonomic classes, of which two are entirely extinct. Cephalopod molluscs, such as squid, cuttlefish, and octopuses, are among the most neurologically advanced of all invertebrates—and either the giant squid or the colossal squid is the largest known extant invertebrate species. The gastropods (snails, slugs and abalone) are by far the most diverse class and account for 80% of the total classified molluscan species.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Mollusks in the context of Symbiodinium

Symbiodinium is a genus of dinoflagellates that encompasses the largest and most prevalent group of endosymbiotic dinoflagellates known and have photosymbiotic relationships with many species. These unicellular microalgae commonly reside in the endoderm of tropical cnidarians such as corals, sea anemones, and jellyfish, where the products of their photosynthetic processing are exchanged in the host for inorganic molecules. They are also harbored by various species of demosponges, flatworms, mollusks such as the giant clams, foraminifera (soritids), and some ciliates. Generally, these dinoflagellates enter the host cell through phagocytosis, persist as intracellular symbionts, reproduce, and disperse to the environment. The exception is in most mollusks, where these symbionts are intercellular (between the cells). Cnidarians that are associated with Symbiodinium occur mostly in warm oligotrophic (nutrient-poor), marine environments where they are often the dominant constituents of benthic communities. These dinoflagellates are therefore among the most abundant eukaryotic microbes found in coral reef ecosystems.

Symbiodinium are colloquially called zooxanthellae, and animals symbiotic with algae in this genus are said to be "zooxanthellate". The term was loosely used to refer to any golden-brown endosymbionts, including diatoms and other dinoflagellates. Continued use of the term in the scientific literature is discouraged because of the confusion caused by overly generalizing taxonomically diverse symbiotic relationships.

↓ Explore More Topics
In this Dossier

Mollusks in the context of Biofact (archaeology)

In archaeology, a biofact (or ecofact) is any organic material including flora or fauna material found at an archaeological site that has not been technologically altered by humans yet still has cultural relevance. Biofacts can include but are not limited to plants, seeds, pollen, animal bones, insects, fish bones and mollusks. The study of biofacts, alongside other archaeological remains such as artifacts are a key element to understanding how past societies interacted with their surrounding environment and with each other. Biofacts also play a role in helping archaeologists understand questions of subsistence and reveals information about the domestication of certain plant species and animals which demonstrates, for example, the transition from a hunter-gatherer society to a farming society.

Biofacts are differentiated from artifacts in that artifacts are typically considered anything purposefully manipulated or made by human art and workmanship, whereas ecofacts represent matter that has not been made or deliberately influenced by humans yet still has cultural relevance. Biofacts reveal how people respond to their surroundings.

↑ Return to Menu

Mollusks in the context of Marine biogenic calcification

Marine biogenic calcification is the production of calcium carbonate by organisms in the global ocean.

Marine biogenic calcification is the biologically mediated process by which marine organisms produce and deposit calcium carbonate minerals to form skeletal structures or hard tissues. This process is a fundamental aspect of the life cycle of some marine organisms, including corals, mollusks, foraminifera, certain types of plankton, and other calcifying marine invertebrates. The resulting structures, such as shells, skeletons, and coral reefs, function as protection, support, and shelter and create some of the most biodiverse habitats in the world. Marine biogenic calcifiers also play a key role in the biological carbon pump and the biogeochemical cycling of nutrients, alkalinity, and organic matter.

↑ Return to Menu

Mollusks in the context of Animal product

An animal product is any material derived from the body of a non-human animal or their excretions. Examples are meat, fat, blood, milk, eggs, honey, and lesser known products, such as isinglass, rennet, and cochineal.

The word animals includes all species in the biological kingdom Animalia, except humans. This includes, for example, tetrapods, arthropods, and mollusks. Generally, products made from decomposed animals, such as petroleum, or crops grown in soil fertilized with animal remains or manure are not characterized as animal products. Products sourced from humans (e.g. breast milk) are not typically classified as animal products.

↑ Return to Menu

Mollusks in the context of Sea slug

Sea slug is a common name for some marine invertebrates with varying levels of resemblance to terrestrial slugs. Most creatures known as sea slugs are gastropods, i.e. they are sea snails (marine gastropod mollusks) that, over evolutionary time, have either entirely lost their shells or have seemingly lost their shells due to having a significantly reduced or internal shell. The name "sea slug" is often applied to nudibranchs and a paraphyletic set of other marine gastropods without apparent shells.

Sea slugs have an enormous variation in body shape, color, and size. Most are partially translucent. The often bright colors of reef-dwelling species imply that these animals are under constant threat of predators. Still, the color can warn other animals of the sea slug's toxic stinging cells (nematocysts) or offensive taste. Like all gastropods, they have small, razor-sharp teeth called radulas. Most sea slugs have a pair of rhinophores—sensory tentacles used primarily for the sense of smell—on their head, with a small eye at the base of each rhinophore. Many have feathery structures (cerata) on the back, often in a contrasting color, which act as gills. All species of genuine sea slugs have a selected prey animal on which they depend for food, including certain jellyfish, bryozoans, sea anemones, plankton, and other species of sea slugs.

↑ Return to Menu

Mollusks in the context of Biological pump

The biological pump (or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments. In other words, it is a biologically mediated process which results in the sequestering of carbon in the deep ocean away from the atmosphere and the land. The biological pump is the biological component of the "marine carbon pump" which contains both a physical and biological component. It is the part of the broader oceanic carbon cycle responsible for the cycling of organic matter formed mainly by phytoplankton during photosynthesis (soft-tissue pump), as well as the cycling of calcium carbonate (CaCO3) formed into shells by certain organisms such as plankton and mollusks (carbonate pump).

Budget calculations of the biological carbon pump are based on the ratio between sedimentation (carbon export to the ocean floor) and remineralization (release of carbon to the atmosphere).

↑ Return to Menu

Mollusks in the context of Coquina

Coquina (/kˈknə/) is a sedimentary rock that is composed either wholly or almost entirely of the transported, abraded, and mechanically sorted fragments of mollusks, trilobites, brachiopods, or other invertebrates. The term coquina comes from the Spanish word for "cockle" and "shellfish".

For a sediment to be considered to be a coquina, the particles composing it should average 2 mm (0.079 in) or greater in size. Coquina can vary in hardness from poorly to moderately cemented. Incompletely consolidated and poorly cemented coquinas are considered grainstones in the Dunham classification system for carbonate sedimentary rocks. A well-cemented coquina is classified as a biosparite (fossiliferous limestone) according to the Folk classification of sedimentary rocks.

↑ Return to Menu