Mesoderm in the context of "Notochord"

Play Trivia Questions online!

or

Skip to study material about Mesoderm in the context of "Notochord"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Mesoderm in the context of Stem cell

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

In mammals, roughly 50 to 150 cells make up the inner cell mass during the blastocyst stage of embryonic development, around days 5–14. These have stem-cell capability. In vivo, they eventually differentiate into all of the body's cell types (making them pluripotent). This process starts with the differentiation into the three germ layers – the ectoderm, mesoderm and endoderm – at the gastrulation stage. However, when they are isolated and cultured in vitro, they can be kept in the stem-cell stage and are known as embryonic stem cells (ESCs).

↑ Return to Menu

Mesoderm in the context of Bilaterian

Bilateria (/ˌbləˈtɪəriə/) is a large clade of animals characterised by bilateral symmetry during embryonic development. This means their body plans are laid around a longitudinal axis with a front (or "head") and a rear (or "tail") end, as well as a left–right–symmetrical belly (ventral) and back (dorsal) surface. Nearly all bilaterians maintain a bilaterally symmetrical body as adults; the most notable exception is the echinoderms, which have pentaradial symmetry as adults, but bilateral symmetry as embryos. With few exceptions, bilaterian embryos are triploblastic, having three germ layers: endoderm, mesoderm and ectoderm, and have complete digestive tracts with a separate mouth and anus. Some bilaterians lack body cavities, while others have a primary body cavity derived from the blastocoel, or a secondary cavity, the coelom. Cephalization is a characteristic feature among most bilaterians, where the sense organs and central nerve ganglia become concentrated at the front end of the animal.

Bilaterians constitute one of the five main lineages of animals, the other four being Porifera (sponges), Cnidaria (jellyfish, hydrozoans, sea anemones and corals), Ctenophora (comb jellies) and Placozoa. They rapidly diversified in the late Ediacaran and the Cambrian, and are now by far the most successful animal lineage, with over 98% of known animal species. Bilaterians are traditionally classified as either deuterostomes or protostomes, based on whether the blastopore becomes the anus or mouth. The phylum Xenacoelomorpha, once thought to be flatworms, was erected in 2011, and has provided an extra challenge to bilaterian taxonomy, as they likely do not belong to either group.

↑ Return to Menu

Mesoderm in the context of Germ layer

A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals that are sister taxa to the sponges) produce two or three primary germ layers. Some animals, like cnidarians, produce two germ layers (the ectoderm and endoderm) making them diploblastic. Other animals such as bilaterians produce a third layer (the mesoderm) between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal's tissues and organs through the process of organogenesis.

↑ Return to Menu

Mesoderm in the context of Fibrous tissue

Connective tissue is biological tissue that is found in between other tissues in the body. Most types of connective tissue consists of three main components: elastic and collagen fibers, ground substance, and cells.

It is one of the four primary types of animal tissue along with epithelial tissue, muscle tissue, and nervous tissue. It develops mostly from the mesenchyme, derived from the mesoderm, the middle embryonic germ layer.

↑ Return to Menu

Mesoderm in the context of Organogenesis

Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation (the ectoderm, endoderm, and mesoderm) form the internal organs of the organism.

The cells of each of the three germ layers undergo differentiation, a process where less-specialized cells become more-specialized through the expression of a specific set of genes. Cell differentiation is driven by cell signaling cascades. Differentiation is influenced by extracellular signals such as growth factors that are exchanged to adjacent cells which is called juxtracrine signaling or to neighboring cells over short distances which is called paracrine signaling. Intracellular signals – a cell signaling itself (autocrine signaling) – also play a role in organ formation. These signaling pathways allow for cell rearrangement and ensure that organs form at specific sites within the organism. The organogenesis process can be studied using embryos and organoids.

↑ Return to Menu

Mesoderm in the context of Blastoderm

A blastoderm (germinal disc, blastodisc) is a single layer of embryonic epithelial tissue that makes up the blastula. It encloses the fluid-filled blastocoel. Gastrulation follows blastoderm formation, where the tips of the blastoderm begins the formation of the ectoderm, mesoderm, and endoderm.

The blastoderm is a thin sheet of cells that forms on the surface of the yolk soon after fertilization in many animals, including birds, fish, amphibians, and even insects. It marks one of the earliest organized stages in embryonic growth, laying down a foundation that future tissues and organs grow from. In birds, the blastoderm separates into zones that will develop into both the embryo and the membranes that help protect and feed it.

↑ Return to Menu