Blastoderm in the context of "Mesoderm"

Play Trivia Questions online!

or

Skip to study material about Blastoderm in the context of "Mesoderm"

Ad spacer

⭐ Core Definition: Blastoderm

A blastoderm (germinal disc, blastodisc) is a single layer of embryonic epithelial tissue that makes up the blastula. It encloses the fluid-filled blastocoel. Gastrulation follows blastoderm formation, where the tips of the blastoderm begins the formation of the ectoderm, mesoderm, and endoderm.

The blastoderm is a thin sheet of cells that forms on the surface of the yolk soon after fertilization in many animals, including birds, fish, amphibians, and even insects. It marks one of the earliest organized stages in embryonic growth, laying down a foundation that future tissues and organs grow from. In birds, the blastoderm separates into zones that will develop into both the embryo and the membranes that help protect and feed it.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Blastoderm in the context of Cell growth

Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than the overall rate of cellular degradation (the destruction of biomolecules via the proteasome, lysosome or autophagy, or catabolism).

Cell growth is not to be confused with cell division or the cell cycle, which are distinct processes that can occur alongside cell growth during the process of cell proliferation, where a cell, known as the mother cell, grows and divides to produce two daughter cells. Importantly, cell growth and cell division can also occur independently of one another. During early embryonic development (cleavage of the zygote to form a morula and blastoderm), cell divisions occur repeatedly without cell growth. Conversely, some cells can grow without cell division or without any progression of the cell cycle, such as growth of neurons during axonal pathfinding in nervous system development.

↑ Return to Menu

Blastoderm in the context of Coenobium (morphology)

A coenocyte (/ˈsnəˌst/) is a multinucleate cell which can result from multiple nuclear divisions without their accompanying cytokinesis, in contrast to a syncytium, which results from cellular aggregation followed by dissolution of the cell membranes inside the mass. The word syncytium in animal embryology is used to refer to the coenocytic blastoderm of invertebrates. A coenocytic colony is referred to as a coenobium (pl.: coenobia), and most coenobia are composed of a distinct number of cells, often as a multiple of two (4, 8, etc.).

Research suggests that coenobium formation may be a defense against grazing in some species.

↑ Return to Menu

Blastoderm in the context of Blastula

Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development, the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm. The blastula (from Greek βλαστός (blastos meaning sprout)) is a hollow sphere of cells known as blastomeres surrounding an inner fluid-filled cavity called the blastocoel. Embryonic development begins with a sperm fertilizing an egg cell to become a zygote, which undergoes many cleavages to develop into a ball of cells called a morula. Only when the blastocoel is formed does the early embryo become a blastula. The blastula precedes the formation of the gastrula in which the germ layers of the embryo form.

A common feature of a vertebrate blastula is that it consists of a layer of blastomeres, known as the blastoderm, which surrounds the blastocoel. In mammals, the blastocyst contains an embryoblast (or inner cell mass) that will eventually give rise to the definitive structures of the fetus, and a trophoblast which goes on to form the extra-embryonic tissues.

↑ Return to Menu

Blastoderm in the context of Syncytia

A syncytium (/sɪnˈsɪʃiəm/; pl.: syncytia; from Greek: σύν syn "together" and κύτος kytos "box, i.e. cell") (also synctitium) or symplasm is a multinucleate cell that can result from multiple cell fusions of uninuclear cells (i.e., cells with a single nucleus), in contrast to a coenocyte, which can result from multiple nuclear divisions without accompanying cytokinesis. The muscle cell that makes up animal skeletal muscle is a classic example of a syncytium cell. The term may also refer to cells interconnected by specialized membranes with gap junctions, as seen in the heart muscle cells and certain smooth muscle cells, which are synchronized electrically in an action potential.

The field of embryogenesis uses the word syncytium to refer to the coenocytic blastoderm embryos of invertebrates, such as Drosophila melanogaster.

↑ Return to Menu

Blastoderm in the context of Triploblastic

Triploblasty is a condition of the gastrula in which there are three primary germ layers: the ectoderm, mesoderm, and endoderm. Germ cells are set aside in the embryo at the blastula stage, and are incorporated into the gonads during organogenesis. The germ layers form during the gastrulation of the blastula. The term triploblast may refer to any egg cell in which the blastoderm splits into three layers.

All bilaterians, which are the animals with bilaterally symmetrical embryos, are triploblastic. Other animal taxa, namely the ctenophores, placozoans, and cnidarians, are diploblastic, which means that their embryos contain only two germ layers. Sponges are even less developmentally specialized, because they lack both true tissues and organs.

↑ Return to Menu