Meridian (astronomy) in the context of "Solar noon"

Play Trivia Questions online!

or

Skip to study material about Meridian (astronomy) in the context of "Solar noon"





👉 Meridian (astronomy) in the context of Solar noon

Noon (also known as noontime or midday) is 12 o'clock in the daytime.

Solar noon is the time when the Sun appears to contact the local celestial meridian. This is when the Sun reaches its apparent highest point in the sky, at 12 noon apparent solar time and can be observed using a sundial. The local or clock time of solar noon depends on the date, longitude, and time zone, with Daylight Saving Time tending to place solar noon closer to 1:00pm.

↓ Explore More Topics
In this Dossier

Meridian (astronomy) in the context of Culmination

In observational astronomy, culmination is the passage of a celestial object (such as the Sun, the Moon, a planet, a star, constellation or a deep-sky object) across the observer's local meridian. These events are also known as meridian transits, used in timekeeping and navigation, and measured precisely using a transit telescope.

During each day, every celestial object appears to move along a circular path on the celestial sphere due to the Earth's rotation creating two moments when it crosses the meridian. Except at the geographic poles, any celestial object passing through the meridian has an upper culmination, when it reaches its highest point (the moment when it is nearest to the zenith), and nearly twelve hours later, is followed by a lower culmination, when it reaches its lowest point (nearest to the nadir). The time of culmination (when the object culminates) is often used to mean upper culmination.

↑ Return to Menu

Meridian (astronomy) in the context of Position of the Sun

The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic.

Earth's rotation about its axis causes diurnal motion, so that the Sun appears to move across the sky in a Sun path that depends on the observer's geographic latitude. The time when the Sun transits the observer's meridian depends on the geographic longitude.

↑ Return to Menu

Meridian (astronomy) in the context of Shen Kuo

Shen Kuo (Chinese: 沈括; 1031–1095) or Shen Gua, courtesy name Cunzhong (存中) and pseudonym Mengqi (now usually given as Mengxi) Weng (夢溪翁), was a Chinese polymath, scientist, and statesman of the Song dynasty (960–1279). Shen was a master in many fields of study including mathematics, optics, and horology. In his career as a civil servant, he became a finance minister, governmental state inspector, head official for the Bureau of Astronomy in the Song court, Assistant Minister of Imperial Hospitality, and also served as an academic chancellor. At court his political allegiance was to the Reformist faction known as the New Policies Group, headed by Chancellor Wang Anshi (1021–1085).

In his Dream Pool Essays or Dream Torrent Essays (夢溪筆談; Mengxi Bitan) of 1088, Shen was the first to describe the magnetic needle compass, which would be used for navigation (first described in Europe by Alexander Neckam in 1187). Shen discovered the concept of true north in terms of magnetic declination towards the north pole, with experimentation of suspended magnetic needles and "the improved meridian determined by Shen's [astronomical] measurement of the distance between the pole star and true north". This was the decisive step in human history to make compasses more useful for navigation, and may have been a concept unknown in Europe for another four hundred years (evidence of German sundials made circa 1450 show markings similar to Chinese geomancers' compasses in regard to declination).

↑ Return to Menu

Meridian (astronomy) in the context of Twinkling

Twinkling, also called scintillation, is a generic term for variations in apparent brightness, colour, or position of a distant luminous object viewed through a medium. If the object lies outside the Earth's atmosphere, as in the case of stars and planets, the phenomenon is termed astronomical scintillation; for objects within the atmosphere, the phenomenon is termed terrestrial scintillation. As one of the three principal factors governing astronomical seeing (the others being light pollution and cloud cover), atmospheric scintillation is defined as variations in illuminance only.

In simple terms, twinkling of stars is caused by the passing of light through different layers of a turbulent atmosphere. Most scintillation effects are caused by anomalous atmospheric refraction caused by small-scale fluctuations in air density usually related to temperature gradients. Scintillation effects are always much more pronounced near the horizon than near the zenith (directly overhead), since light rays near the horizon must have longer paths through the atmosphere before reaching the observer. Atmospheric twinkling is measured quantitatively using a scintillometer.

↑ Return to Menu

Meridian (astronomy) in the context of Hour circle

In astronomy, the hour circle is the great circle through a given object and the two celestial poles. Together with declination and distance (from the planet's centre of mass), it determines the location of any celestial object. As such, it is a higher concept than the meridian as defined in astronomy, which takes account of the terrain and depth to the centre of Earth at a ground observer's location. The hour circles, specifically, are perfect circles perpendicular (at right angles) to the celestial equator. By contrast, the declination of an object viewed on the celestial sphere is the angle of that object to/from the celestial equator (thus ranging from +90° to −90°).

The location of stars, planets, and other similarly distant objects is usually expressed in the following parameters, one for each of the three spatial dimensions: their declination, right ascension (epoch-fixed hour angle), and distance. These are as located at the vernal equinox for the epoch (e.g. J2000) stated.

↑ Return to Menu

Meridian (astronomy) in the context of Transit circle

The meridian circle is an instrument for timing of the passage of stars across the local meridian, an event known as a culmination, while at the same time measuring their angular distance from the nadir. These are special purpose telescopes mounted so as to allow pointing only in the meridian, the great circle through the north point of the horizon, the north celestial pole, the zenith, the south point of the horizon, the south celestial pole, and the nadir. Meridian telescopes rely on the rotation of the sky to bring objects into their field of view and are mounted on a fixed, horizontal, east–west axis.

The similar transit instrument, transit circle, or transit telescope is likewise mounted on a horizontal axis, but the axis need not be fixed in the east–west direction. For instance, a surveyor's theodolite can function as a transit instrument if its telescope is capable of a full revolution about the horizontal axis. Meridian circles are often called by these names, although they are less specific.

↑ Return to Menu

Meridian (astronomy) in the context of Midnight

Midnight is the transition time from one day to the next – the moment when the date changes, on the local official clock time for any particular jurisdiction. By clock time, midnight is the opposite of noon, differing from it by 12 hours.

Solar midnight is the time opposite to solar noon, when the Sun is closest to the nadir, and the night is equidistant from sunset and sunrise. Due to the advent of time zones, which regularize time across a range of meridians, and daylight saving time, solar midnight rarely coincides with 12 midnight on the clock. Solar midnight depends on longitude and time of the year rather than on time zone. In ancient Roman timekeeping, midnight was halfway between dusk and dawn (i.e., solar midnight), varying according to the seasons.

↑ Return to Menu

Meridian (astronomy) in the context of Astronomical rings

Astronomical rings (Latin: annuli astronomici), also known as Gemma's rings, are an early astronomical instrument. The instrument consists of three rings, representing the celestial equator, declination, and the meridian.

It can be used as a sun dial to tell time, if the approximate latitude and season is known, or to tell latitude, if the time is known or observed (at solar noon). It may be considered to be a simplified, portable armillary sphere, or a more complex form of astrolabe.

↑ Return to Menu