Atmospheric refraction in the context of "Twinkling"

Play Trivia Questions online!

or

Skip to study material about Atmospheric refraction in the context of "Twinkling"

Ad spacer

⭐ Core Definition: Atmospheric refraction

Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. This refraction is due to the velocity of light through air decreasing (the refractive index increases) with increased density. Atmospheric refraction near the ground produces mirages. Such refraction can also raise or lower, or stretch or shorten, the images of distant objects without involving mirages. Turbulent air can make distant objects appear to twinkle or shimmer. The term also applies to the refraction of sound. Atmospheric refraction is considered in measuring the position of both celestial and terrestrial objects.

Astronomical or celestial refraction causes astronomical objects to appear higher above the horizon than they actually are. Terrestrial refraction usually causes terrestrial objects to appear higher than they actually are, although in the afternoon when the air near the ground is heated, the rays can curve upward making objects appear lower than they actually are.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Atmospheric refraction in the context of Twinkling

Twinkling, also called scintillation, is a generic term for variations in apparent brightness, colour, or position of a distant luminous object viewed through a medium. If the object lies outside the Earth's atmosphere, as in the case of stars and planets, the phenomenon is termed astronomical scintillation; for objects within the atmosphere, the phenomenon is termed terrestrial scintillation. As one of the three principal factors governing astronomical seeing (the others being light pollution and cloud cover), atmospheric scintillation is defined as variations in illuminance only.

In simple terms, twinkling of stars is caused by the passing of light through different layers of a turbulent atmosphere. Most scintillation effects are caused by anomalous atmospheric refraction caused by small-scale fluctuations in air density usually related to temperature gradients. Scintillation effects are always much more pronounced near the horizon than near the zenith (directly overhead), since light rays near the horizon must have longer paths through the atmosphere before reaching the observer. Atmospheric twinkling is measured quantitatively using a scintillometer.

↓ Explore More Topics
In this Dossier

Atmospheric refraction in the context of Sunset

Sunset (or sundown) is the disappearance of the Sun at the end of the Sun path, below the horizon of the Earth (or any other astronomical object in the Solar System) due to its rotation. As viewed from everywhere on Earth, it is a phenomenon that happens approximately once every 24 hours, except in areas close to the poles. The equinox Sun sets due west at the moment of both the spring and autumn equinoxes. As viewed from the Northern Hemisphere, the Sun sets to the northwest (or not at all) in the spring and summer, and to the southwest in the autumn and winter; these seasons are reversed for the Southern Hemisphere.

The sunset is defined in astronomy as the moment the upper limb of the Sun disappears below the horizon. Near the horizon, atmospheric refraction causes sunlight rays to be distorted to such an extent that geometrically the solar disk is already about one diameter below the horizon when a sunset is observed.

↑ Return to Menu

Atmospheric refraction in the context of Horizon

The horizon is the border between the surface of a celestial body and its sky when viewed from the perspective of an observer on or above the surface of the celestial body. This concept is further refined as -

There is also an imaginary astronomical, celestial, or theoretical horizon, part of the horizontal coordinate system, which is an infinite eye-level plane perpendicular to a line that runs (a) from the center of a celestial body (b) through the observer and (c) out to space (see graphic). It is used to calculate "horizon dip," which is the difference between the astronomical horizon and the sea horizon measured in arcs. Horizon dip is one factor taken into account in navigation by the stars.

↑ Return to Menu

Atmospheric refraction in the context of Polar circle

A polar circle is a geographic term for a conditional circular line (arc) referring either to the Arctic Circle or the Antarctic Circle. These are two of the keynote circles of latitude (parallels). On Earth, the Arctic Circle is currently drifting northwards at a speed of about 14.5 m per year and is now at a mean latitude (i.e. without taking into account the astronomical nutation) of 66°33′50.7″ N; the Antarctic Circle is currently drifting southwards at a speed of about 14.5 m per year and is now at a mean latitude of 66°33′50.7″ S. Polar circles are often equated with polar regions of Earth. Due to their inherent climate environment, the bulk of the Arctic Circle, much of which is sea, is sparsely settled whereas this applies to all of Antarctica which is mainly land and sheltered ice shelves.

If Earth had no atmosphere, then both polar circles (arcs) would see at least a day a year when the center of the Sun is continuously above the horizon and at least a day a year when it is always below the horizon – a polar day and a polar night as is the case for longer, within the circles. Up to and including the associated poles (North and South), known geographically as the frigid zones, such duration extends up to half of the year, namely, close to the poles. Instead, atmospheric refraction and the Sun's light reaching the planet as an extended object rather than a point source means that just within each circle the Earth's surface does not experience any proper polar night, 24 hours where the sun does not rise. By these same two factors, just outward of each circle still experiences a polar day (a day in which the sun does not fully set).

↑ Return to Menu

Atmospheric refraction in the context of Line-of-sight propagation

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves can only travel in a direct visual path from the source to the receiver without obstacles. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

In contrast to line-of-sight propagation, at low frequency (below approximately 3 MHz) due to diffraction, radio waves can travel as ground waves, which follow the contour of the Earth. This enables AM radio stations to transmit beyond the horizon. Additionally, frequencies in the shortwave bands between approximately 1 and 30 MHz, can be refracted back to Earth by the ionosphere, called skywave or "skip" propagation, thus giving radio transmissions in this range a potentially global reach.

↑ Return to Menu

Atmospheric refraction in the context of Visibility

In meteorology, visibility is the measure of the distance at which an object or light can be clearly discerned. It depends on the transparency of the surrounding air and as such, it is unchanging no matter the ambient light level or time of day. It is reported within surface weather observations and METAR code either in meters or statute miles, depending upon the country. Visibility affects all forms of traffic: roads, railways, sailing and aviation.

The geometric range of vision is limited by the curvature of the Earth and depends on the eye level and the height of the object being viewed. In geodesy, the atmospheric refraction must be taken into account when calculating geodetic visibility.

↑ Return to Menu

Atmospheric refraction in the context of Looming and similar refraction phenomena

While mirages are the best known atmospheric refraction phenomena, looming and similar refraction phenomena do not produce mirages. Mirages show an extra image or images of the miraged object, while looming, towering, stooping, and sinking do not. No inverted image is present in those phenomena either. Depending on atmospheric conditions, the objects can appear to be elevated or lowered, stretched or stooped. These phenomena can occur together, changing the appearance of different parts of the objects in different ways. Sometimes these phenomena can occur together with a true mirage.

↑ Return to Menu