Liquefied petroleum gas in the context of "Petroleum refining processes"

Play Trivia Questions online!

or

Skip to study material about Liquefied petroleum gas in the context of "Petroleum refining processes"

Ad spacer

⭐ Core Definition: Liquefied petroleum gas

Liquefied petroleum gas, also referred to as liquid petroleum gas (LPG or LP gas), is a fuel gas which contains a flammable mixture of hydrocarbon gases, specifically propane, n-butane and isobutane. It can also contain some propylene, butylene, and isobutylene/isobutene.

LPG is used as a fuel gas in heating appliances, cooking equipment, and vehicles, and is used as an aerosol propellant and a refrigerant, replacing chlorofluorocarbons in an effort to reduce the damage it causes to the ozone layer. When specifically used as a vehicle fuel, it is often referred to as autogas or just as gas.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Liquefied petroleum gas in the context of Petroleum refining processes

Petroleum refining processes are the chemical engineering processes and other facilities used in petroleum refineries (also referred to as oil refineries) to transform crude oil into useful products such as liquefied petroleum gas (LPG), gasoline or petrol, kerosene, jet fuel, diesel oil and fuel oils.

Refineries and petroleum industries are very large industrial complexes that involve many different processing units and auxiliary facilities such as utility units and storage tanks. Each refinery has its own unique arrangement and combination of refining processes largely determined by the refinery location, desired products and economic considerations.

↓ Explore More Topics
In this Dossier

Liquefied petroleum gas in the context of Oil refinery

An oil refinery or petroleum refinery is an industrial process plant where petroleum (crude oil) is transformed and refined into products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefied petroleum gas and petroleum naphtha. Petrochemical feedstock like ethylene and propylene can also be produced directly by cracking crude oil without the need of using refined products of crude oil such as naphtha. The crude oil feedstock has typically been processed by an oil production plant. There is usually an oil depot at or near an oil refinery for the storage of incoming crude oil feedstock as well as bulk liquid products. In 2020, the total capacity of global refineries for crude oil was about 101.2 million barrels per day.

Oil refineries are typically large, sprawling industrial complexes with extensive piping running throughout, carrying streams of fluids between large chemical processing units, such as distillation columns. In many ways, oil refineries use many different technologies and can be thought of as types of chemical plants. Since December 2008, the world's largest oil refinery has been the Jamnagar Refinery owned by Reliance Industries, located in Gujarat, India, with a processing capacity of 1.24 million barrels (197,000 m) per day.

↑ Return to Menu

Liquefied petroleum gas in the context of Autogas

Autogas is liquefied petroleum gas (LPG) used as a fuel in internal combustion engines of vehicles as well as in stationary applications such as generators. It is a mixture of propane and butane.

Autogas is widely used as a "green" fuel, as its use reduces CO2 exhaust emissions by around 15% compared to petrol. One litre of petrol produces 2.3 kg of CO2 when burnt, whereas the equivalent amount of autogas (1.33 litres due to the lower density of autogas) produces 2 kg of CO2 when burnt. CO emissions are 30% lower compared to petrol, and NOx is reduced by 50%. It has an octane rating (MON/RON) that is between 90 and 110 and an energy content (higher heating value—HHV) that is between 25.5 megajoules per litre (for pure propane) and 28.7 megajoules per litre (for pure butane) depending upon the actual fuel composition.

↑ Return to Menu

Liquefied petroleum gas in the context of Compressed natural gas

Compressed natural gas (or simply shortened as CNG) is a fuel gas mainly composed of methane (CH4), compressed to less than 1% of the volume it occupies at standard atmospheric pressure. It is stored and distributed in hard containers at a pressure of 20–25 megapascals (2,900–3,600 psi; 200–250 bar), usually in cylindrical or spherical shapes.

CNG is used in traditional petrol/internal combustion engine vehicles that have been modified, or in vehicles specifically manufactured for CNG use: either alone (dedicated), with a segregated liquid fuel system to extend range (dual fuel), or in conjunction with another fuel (bi-fuel). It can be used in place of petrol, diesel fuel, and liquefied petroleum gas (LPG). CNG combustion produces fewer undesirable gases than the aforementioned fuels. In comparison to other fuels, natural gas poses less of a threat in the event of a spill, because it is lighter than air and disperses quickly when released. Biomethane, biogas from anaerobic digestion or landfill, can be used.

↑ Return to Menu

Liquefied petroleum gas in the context of Downstream (petroleum industry)

The oil and gas industry is usually divided into three major sectors: upstream, midstream, and downstream. The downstream sector is the refining of petroleum crude oil and the processing and purifying of raw natural gas, as well as the marketing and distribution of products derived from crude oil and natural gas. The downstream sector reaches consumers through products such as gasoline or petrol, kerosene, jet fuel, diesel oil, heating oil, fuel oils, lubricants, waxes, asphalt, natural gas, and liquefied petroleum gas (LPG) as well as naphtha and hundreds of petrochemicals.

Midstream operations are often included in the downstream category and are considered to be a part of the downstream sector.

↑ Return to Menu

Liquefied petroleum gas in the context of Energy poverty and cooking

One aspect of energy poverty is lack of access to clean, modern fuels and technologies for cooking. As of 2020, more than 2.6 billion people in developing countries routinely cook with fuels such as wood, animal dung, coal, or kerosene. Burning these types of fuels in open fires or traditional stoves causes harmful household air pollution, resulting in an estimated 3.8 million deaths annually according to the World Health Organization (WHO), and contributes to various health, socio-economic, and environmental problems.

A high priority in global sustainable development is making clean cooking facilities universally available and affordable. Stoves and appliances that run on electricity, liquid petroleum gas (LPG), piped natural gas (PNG), biogas, alcohol, and solar heat meet WHO guidelines for clean cooking. Universal access to clean cooking facilities would benefit the environment and gender equality greatly.

↑ Return to Menu

Liquefied petroleum gas in the context of Propane

Propane (/ˈprpn/) is a three-carbon chain alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but becomes liquid when compressed for transportation and storage. A by-product of natural gas processing and petroleum refining, it is often a constituent of liquefied petroleum gas (LPG), which is commonly used as a fuel in domestic and industrial applications and in low-emissions public transportation; other constituents of LPG may include propylene, butane, butylene, butadiene, and isobutylene. Discovered in 1857 by the French chemist Marcellin Berthelot, it became commercially available in the US by 1911. Propane has lower volumetric energy density than gasoline or coal, but has higher gravimetric energy density than them and burns more cleanly.

Propane gas has become a popular choice for barbecues and portable stoves because its low −42 °C boiling point makes it vaporise inside pressurised liquid containers (it exists in two phases, vapor above liquid). It retains its ability to vaporise even in cold weather, making it better-suited for outdoor use in cold climates than alternatives with higher boiling points like butane. LPG powers buses, forklifts, automobiles, outboard boat motors, and ice resurfacing machines, and is used for heat and cooking in recreational vehicles and campers. Propane is also becoming popular as a replacement refrigerant (R290) for heatpumps as it offers greater efficiency than the current refrigerants: R410A / R32, higher temperature heat output and less damage to the atmosphere for escaped gases—at the expense of high gas flammability.

↑ Return to Menu

Liquefied petroleum gas in the context of Fuel gas

Fuel gas is one of a number of fuels that under ordinary conditions are gaseous. Most fuel gases are composed of hydrocarbons (such as methane and propane), hydrogen, carbon monoxide, or mixtures thereof. Such gases are sources of energy that can be readily transmitted and distributed through pipes.

Fuel gas is contrasted with liquid fuels and solid fuels, although some fuel gases are liquefied for storage or transport (for example, autogas and liquified petroleum gas). While their gaseous nature has advantages, avoiding the difficulty of transporting solid fuel and the dangers of spillage inherent in liquid fuels, it also has limitations. It is possible for a fuel gas to be undetected and cause a gas explosion. For this reason, odorizers are added to most fuel gases. The most common type of fuel gas in current use is natural gas.

↑ Return to Menu