Lift-to-drag ratio in the context of "Hang gliding"

Play Trivia Questions online!

or

Skip to study material about Lift-to-drag ratio in the context of "Hang gliding"

Ad spacer

⭐ Core Definition: Lift-to-drag ratio

In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

For an aerofoil wing or powered aircraft, the L/D is specified when in straight and level flight. For a glider it determines the glide ratio, of distance travelled against loss of height.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Lift-to-drag ratio in the context of Hang gliding

Hang gliding is an air sport or recreational activity in which a pilot flies a light, non-motorised, fixed-wing heavier-than-air aircraft called a hang glider. Most modern hang gliders are made of an aluminium alloy or composite frame covered with synthetic sailcloth to form a wing. Typically the pilot is in a harness suspended from the airframe, and controls the aircraft by shifting body weight in opposition to a control frame.

Early hang gliders had a low lift-to-drag ratio, so pilots were restricted to gliding down small hills. By the 1980s this ratio significantly improved, and since then pilots have been able to soar for hours, gain thousands of meters of altitude in thermal updrafts, perform aerobatics, and glide cross-country for hundreds of kilometers. The Federation Aeronautique Internationale and national airspace governing organisations control some regulatory aspects of hang gliding. Obtaining the safety benefits of being instructed is highly recommended and indeed a mandatory requirement in many countries.

↓ Explore More Topics
In this Dossier

Lift-to-drag ratio in the context of Wing

A wing is a type of fin that produces both lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform. Wing efficiency is expressed as lift-to-drag ratio, which compares the benefit of lift with the air resistance of a given wing shape, as it flies. Aerodynamics includes the study of wing performance in air.

Equivalent foils that move through water are found on hydrofoil power vessels and foiling sailboats that lift out of the water at speed and on submarines that use diving planes to point the boat upwards or downwards, while running submerged. The study of foil performance in water is a subfield of Hydrodynamics.

↑ Return to Menu

Lift-to-drag ratio in the context of STOL

A short takeoff and landing (STOL) aircraft is a fixed-wing aircraft that can take off and land on runways that are much shorter than the typical ones needed for conventional take-off and landing. STOL-capable aircraft are usually light aircraft (mostly propeller-driven utility aircraft, sporters or motor gliders) with a high lift-to-drag ratio and typically also a high aspect ratio, allowing them to achieve minimum takeoff speed (i.e. liftoff speed or VLOF) much more quickly and thus requiring a shorter accelerating run before taking off (takeoff roll); and perform landing at a lower minimum steady flight speed (VS0) and thus also a shorter decelerating run (rollout).

Gyrocopters, despite being rotary-wing aircraft, need a forward motion to drive air flow past autorotating rotor blades to generate lift and thus still mandate runways (albeit a very short one) for takeoff and landing. They are therefore also considered STOL aircraft, as they cannot perform vertical takeoff and landing like helicopters.

↑ Return to Menu

Lift-to-drag ratio in the context of Wingsail

A wingsail, twin-skin sail or double skin sail is a variable-camber aerodynamic structure that is fitted to a marine vessel in place of conventional sails. Wingsails are analogous to airplane wings, except that they are designed to provide lift on either side to accommodate being on either tack. Whereas wings adjust camber with flaps, wingsails adjust camber with a flexible or jointed structure (for hard wingsails). Wingsails are typically mounted on an unstayed sparβ€”often made of carbon fiber for lightness and strength. The geometry of wingsails provides more lift, and a better lift-to-drag ratio, than traditional sails. Wingsails are more complex and expensive than conventional sails.

↑ Return to Menu