V speeds in the context of "STOL"

Play Trivia Questions online!

or

Skip to study material about V speeds in the context of "STOL"

Ad spacer

⭐ Core Definition: V speeds

In aviation, V-speeds are standard terms used to define airspeeds important or useful to the operation of all aircraft. These speeds are derived from data obtained by aircraft designers and manufacturers during flight testing for aircraft type-certification. Using them is considered a best practice to maximize aviation safety, aircraft performance, or both.

The actual speeds represented by these designators are specific to a particular model of aircraft. They are expressed by the aircraft's indicated airspeed (and not by, for example, the ground speed), so that pilots may use them directly, without having to apply correction factors, as aircraft instruments also show indicated airspeed.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 V speeds in the context of STOL

A short takeoff and landing (STOL) aircraft is a fixed-wing aircraft that can take off and land on runways that are much shorter than the typical ones needed for conventional take-off and landing. STOL-capable aircraft are usually light aircraft (mostly propeller-driven utility aircraft, sporters or motor gliders) with a high lift-to-drag ratio and typically also a high aspect ratio, allowing them to achieve minimum takeoff speed (i.e. liftoff speed or VLOF) much more quickly and thus requiring a shorter accelerating run before taking off (takeoff roll); and perform landing at a lower minimum steady flight speed (VS0) and thus also a shorter decelerating run (rollout).

Gyrocopters, despite being rotary-wing aircraft, need a forward motion to drive air flow past autorotating rotor blades to generate lift and thus still mandate runways (albeit a very short one) for takeoff and landing. They are therefore also considered STOL aircraft, as they cannot perform vertical takeoff and landing like helicopters.

↓ Explore More Topics
In this Dossier

V speeds in the context of Aircraft catapult

An aircraft catapult is an acceleration device used to help fixed-wing aircraft reach liftoff speed (VLOF) faster during takeoff, typically when trying to take off from a very short runway, as otherwise the aircraft engines alone cannot get the aircraft to sufficient airspeed quickly enough for the wings to generate the lift needed to sustain flight. Launching via catapults enables aircraft that typically are only capable of conventional takeoffs, especially heavier aircraft with significant payloads, to perform short takeoffs from the roll distances of light aircraft. Catapults are usually used on the deck of a ship — such as the flight deck of an aircraft carrier — as a form of assisted takeoff for navalised aircraft, but can also be installed on land-based runways, although this is rare.

Historically it was most common for seaplanes (which have pontoons instead of wheeled landing gears and thus cannot utilize runways) to be catapulted from ships onto nearby water for takeoff, allowing them to conduct aerial reconnaissance missions and be crane-hoisted back on board during retrieval, although by the late First World War their roles are largely supplanted by the more versatile biplanes that can take off and land on carrier decks unassisted. During the Second World War before the advent of escort carriers, monoplane fighter aircraft (notably the Hawker Hurricane) would sometimes be catapulted from "catapult-equipped merchant" (CAM) vessels for one-way sorties to repel enemy aircraft harassing shipping lanes, forcing the returning pilot to either divert to a land-based airstrip, jump out by parachute, or ditch in the water near the convoy and wait for rescue. By the time fleet carriers became the norm in WW2, catapult launches have become largely unnecessary and carrier-based fighter-bombers would routinely perform self-powered takeoffs and landings off and onto carrier decks, especially during the naval aviation-dominated Pacific War between the United States and the Empire of Japan. However, escalating arms races during the Cold War accelerated the adoption of the heavier jet aircraft for naval operations, thus motivating the development of new catapult systems, especially after the popularization of angled flight decks further limited the practical distance available as takeoff runways. Nowadays, jet aircraft can launch from aircraft carriers via either catapults or ski-jump deck, and perform optics-assisted landing onto the same ship with help from decelerative arresting gears.

↑ Return to Menu