Life cycle analysis in the context of "Resource recovery"

Play Trivia Questions online!

or

Skip to study material about Life cycle analysis in the context of "Resource recovery"

Ad spacer

⭐ Core Definition: Life cycle analysis

Life cycle assessment (LCA), also known as life cycle analysis, is a methodology for assessing the impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case of a manufactured product, environmental impacts are assessed from raw material extraction and processing (cradle), through the product's manufacture, distribution and use, to the recycling or final disposal of the materials composing it (grave).

An LCA study involves a thorough inventory of the energy and materials that are required across the supply chain and value chain of a product, process or service, and calculates the corresponding emissions to the environment. LCA thus assesses cumulative potential environmental impacts. The aim is to document and improve the overall environmental profile of the product by serving as a holistic baseline upon which carbon footprints can be accurately compared.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Life cycle analysis in the context of Resource recovery

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

Resource recovery goes further than just the management of waste. Resource recovery is part of a circular economy, in which the extraction of natural resources and generation of wastes are minimised, and in which materials and products are designed more sustainably for durability, reuse, repairability, remanufacturing and recycling. Life-cycle analysis (LCA) can be used to compare the resource recovery potential of different treatment technologies.

↓ Explore More Topics
In this Dossier

Life cycle analysis in the context of Negative emissions technologies

Carbon dioxide removal (CDR) is a process in which carbon dioxide (CO2) is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies. Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR ("CDR is what puts the net into net zero emissions" ). In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.

CDR includes methods that are implemented on land or in aquatic systems. Land-based methods include afforestation, reforestation, agricultural practices that sequester carbon in soils (carbon farming), bioenergy with carbon capture and storage (BECCS), and direct air capture combined with storage. There are also CDR methods that use oceans and other water bodies. Those are called ocean fertilization, ocean alkalinity enhancement, wetland restoration and blue carbon approaches. A detailed analysis needs to be performed to assess how much negative emissions a particular process achieves. This analysis includes life cycle analysis and "monitoring, reporting, and verification" (MRV) of the entire process. Carbon capture and storage (CCS) are not regarded as CDR because CCS does not reduce the amount of carbon dioxide already in the atmosphere.

↑ Return to Menu