Construction waste in the context of "Resource recovery"

Play Trivia Questions online!

or

Skip to study material about Construction waste in the context of "Resource recovery"

Ad spacer

⭐ Core Definition: Construction waste

Construction waste or debris is any kind of debris from the construction process. Different government agencies have clear definitions. For example, the United States Environmental Protection Agency EPA defines construction and demolition materials as “debris generated during the construction, renovation and demolition of buildings, roads, and bridges.” Additionally, the EPA has categorized Construction and Demolition (C&D) waste into three categories:  non-dangerous, hazardous, and semi-hazardous.

Of total construction and demolition (C&D) waste in the United States, 90% comes from the demolition of structures, while waste generated during construction accounts for less than 10%. Construction waste frequently includes materials that are hazardous if disposed of in landfills. Such items include fluorescent lights, batteries, and other electrical equipment.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Construction waste in the context of Resource recovery

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

Resource recovery goes further than just the management of waste. Resource recovery is part of a circular economy, in which the extraction of natural resources and generation of wastes are minimised, and in which materials and products are designed more sustainably for durability, reuse, repairability, remanufacturing and recycling. Life-cycle analysis (LCA) can be used to compare the resource recovery potential of different treatment technologies.

↓ Explore More Topics
In this Dossier