Lagrange point in the context of "Counter-Earth"

Play Trivia Questions online!

or

Skip to study material about Lagrange point in the context of "Counter-Earth"

Ad spacer

⭐ Core Definition: Lagrange point

In celestial mechanics, the Lagrange points (/ləˈɡrɑːn/), also called the Lagrangian points or libration points, are points of equilibrium for small-mass objects under the gravitational influence of two massive orbiting bodies. Mathematically, this involves the solution of the restricted three-body problem.

Normally, the two massive bodies exert an unbalanced gravitational force at a point, altering the orbit of whatever is at that point. At the Lagrange points, the gravitational forces of the two large bodies and the centrifugal force balance each other. This can make Lagrange points an excellent location for satellites, as orbit corrections, and hence fuel requirements, needed to maintain the desired orbit are kept at a minimum.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Lagrange point in the context of Orbit

In celestial mechanics, an orbit is the curved trajectory of an object under the influence of an attracting force. Known as an orbital revolution, examples include the trajectory of a planet around a star, a natural satellite around a planet, or an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law. However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital motion.

↑ Return to Menu

Lagrange point in the context of Deep Space Climate Observatory

Deep Space Climate Observatory (DSCOVR; formerly known as Triana, unofficially known as GoreSat) is a National Oceanic and Atmospheric Administration (NOAA) space weather, space climate, and Earth observation satellite. It was launched by SpaceX on a Falcon 9 v1.1 launch vehicle on 11 February 2015, from Cape Canaveral. This is NOAA's first operational deep space satellite and became its primary system of warning Earth in the event of solar magnetic storms.

DSCOVR was originally proposed as an Earth observation spacecraft positioned at the Sun-Earth L1 Lagrange point, providing live video of the sunlit side of the planet through the Internet as well as scientific instruments to study climate change. Political changes in the United States resulted in the mission's cancellation, and in 2001 the spacecraft was placed into storage.

↑ Return to Menu

Lagrange point in the context of Trojan asteroid

In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its Lagrangian points L4 and L5. Trojans can share the orbits of planets or of large moons.

Trojans are one type of co-orbital object. In this arrangement, a star and a planet orbit about their common barycenter, which is close to the center of the star because it is usually much more massive than the orbiting planet. In turn, a much smaller mass than both the star and the planet, located at one of the Lagrangian points of the star–planet system, is subject to a combined gravitational force that acts through this barycenter. Hence the smallest object orbits around the barycenter with the same orbital period as the planet, and the arrangement can remain stable over time.

↑ Return to Menu

Lagrange point in the context of Orbital station-keeping

In astrodynamics, orbital station-keeping is keeping a spacecraft at a fixed distance from another spacecraft or celestial body. It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted.For spacecraft in a halo orbit around a Lagrange point, station-keeping is even more fundamental, as such an orbit is unstable; without an active control with thruster burns, the smallest deviation in position or velocity would result in the spacecraft leaving orbit completely.

↑ Return to Menu

Lagrange point in the context of Giant-impact hypothesis

The giant-impact hypothesis, sometimes called the Theia Impact, is an astrogeology hypothesis for the formation of the Moon first proposed in 1946 by Canadian geologist Reginald Daly. The hypothesis suggests that the Proto-Earth collided with a Mars-sized co-orbital protoplanet likely from the L4 or L5 Lagrange points of the Earth's orbit approximately 4.5 billion years ago in the early Hadean eon (about 20 to 100 million years after the Solar System formed), and some of the ejected debris from the impact event later re-accreted to form the Moon. The impactor planet is sometimes called Theia, named after the mythical Greek Titan who was the mother of Selene, the goddess of the Moon.

Analysis of lunar rocks published in a 2016 report suggests that the impact might have been a direct hit, causing a fragmentation and thorough mixing of both parent bodies.

↑ Return to Menu

Lagrange point in the context of Theia (planet)

Theia (/ˈθə/ THEE-uh) is a hypothesized ancient planet in the early Solar System which, according to the giant-impact hypothesis, collided with the proto-Earth around 4.5 billion years ago, with some of the resulting ejected debris re-coalescing to form the Moon. Collision simulations support the idea that the two large low-shear-velocity provinces in the Earth's lower mantle may be remnants of Theia. Theia is hypothesized to have been about the size of Mars and likely formed at the L4 or L5 Lagrange points of the Earth's orbit, although some hypotheses debatably suggested it may have formed in the Outer Solar System and later migrated into the Earth's orbit, and might have provided much of Earth's water.

↑ Return to Menu

Lagrange point in the context of Early Earth

Early Earth, also known as Proto-Earth, is loosely defined as Earth in the first one billion years — or gigayear (10 y or Ga) — of its geological history, from its initial formation in the young Solar System at about 4.55 billion years ago (Gya), to the end of the Eoarchean era at approximately 3.5 Gya. On the geologic time scale, this comprises all of the Hadean eon and approximately one-third of the Archean eon, starting with the formation of the Earth about 4.6 Gya, and ended at the start of the Paleoarchean era 3.6 Gya.

This period of Earth's history involved the planet's formation from the solar nebula via a process known as accretion, and transition of the Earth's atmosphere from a hydrogen/helium-predominant primary atmosphere collected from the protoplanetary disk to a reductant secondary atmosphere rich in nitrogen, methane and CO2. This time period included intense impact events as the young Proto-Earth, a protoplanet of about 0.63 Earth masses, began clearing the neighborhood, including the early Moon-forming collision with Theia — a Mars-sized co-orbital planet likely perturbed from the L4 Lagrange point — around 0.032 Ga after formation of the Solar System, which resulted in a series of magma oceans and episodes of core formation. After formation of the core, meteorites or comets from the Outer Solar System might have delivered water and other volatile compounds to the Earth's mantle, crust and ancient atmosphere in an intense "late veneer" bombardment. As the Earth's planetary surface eventually cooled and formed a stable but evolving crust during the end-Hadean, most of the water vapor condensed out of the atmosphere and precipitated into a superocean that covered nearly all of the Earth's surface, transforming the initially lava planet Earth of the Hadean into an ocean planet at the early Archean, where the earliest known life forms appeared soon afterwards.

↑ Return to Menu