Jordan curve in the context of "Simple polygon"

Play Trivia Questions online!

or

Skip to study material about Jordan curve in the context of "Simple polygon"

Ad spacer

⭐ Core Definition: Jordan curve

In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.

Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's Elements: "The [curved] line is […] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which […] will leave from its imaginary moving some vestige in length, exempt of any width."

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Jordan curve in the context of Simple polygon

In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.

The sum of external angles of a simple polygon is . Every simple polygon with sides can be triangulated by of its diagonals, and by the art gallery theorem its interior is visible from some of its vertices.

↓ Explore More Topics
In this Dossier

Jordan curve in the context of Plane curve

In mathematics, a plane curve is a curve in a plane that may be a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic plane curves.Plane curves also include the Jordan curves (curves that enclose a region of the plane but need not be smooth) and the graphs of continuous functions.

↑ Return to Menu

Jordan curve in the context of Jordan curve theorem

In topology, the Jordan curve theorem (JCT), formulated by Camille Jordan in 1887, asserts that every Jordan curve (a plane simple closed curve) divides the plane into two regions: the interior, bounded by the curve, and an unbounded exterior, containing all of the nearby and far away exterior points. Every continuous path connecting a point of one region to a point of the other intersects with the curve somewhere.

While the theorem seems intuitively obvious, it takes some ingenuity to prove it by elementary means. "Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it." (Tverberg (1980, Introduction)). More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces.

↑ Return to Menu